Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 May;26(5):523-32.
doi: 10.1002/bies.20028.

Insulator dynamics and the setting of chromatin domains

Affiliations
Free article
Review

Insulator dynamics and the setting of chromatin domains

Geneviève Fourel et al. Bioessays. 2004 May.
Free article

Abstract

The early discovery of cis-regulatory elements able to promote transcription of genes over large distances led to the postulate that elements, termed insulators, should also exist that would limit the action of enhancers, LCRs and silencers to defined domains. Such insulators were indeed found during the past fifteen years in a wide range of organisms, from yeast to humans. Recent advances point to an important role of transcription factors in insulator activity and demonstrate that the operational observation of an insulator effect relies on a delicate balance between the "efficiency" of the insulator and that of the element to be counteracted. In addition, genuine insulator elements now appear less common than initially envisaged, and they are only found at loci displaying a high density of coding or regulatory information. Where this is not the case, chromatin domains of opposing properties are thought to confront each other at "fuzzy" boundaries. In this article, we propose models for both fixed and fuzzy boundaries that incorporate probabilistic and dynamic parameters.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources