Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 1;38(7):2264-70.
doi: 10.1021/es034601c.

A polymer membrane containing Fe(0) as a contaminant barrier

Affiliations

A polymer membrane containing Fe(0) as a contaminant barrier

Tsutomu Shimotori et al. Environ Sci Technol. .

Abstract

A poly(vinyl alcohol) (PVA) membrane containing iron (Fe(0)) particles was developed and tested as a model barrier for contaminant containment. Carbon tetrachloride, copper (Cu2+), nitrobenzene, 4-nitroacetophenone, and chromate (Cr04(2-)) were selected as model contaminants. Compared with a pure PVA membrane, the Fe(0)/PVA membrane can increase the breakthrough lag time for Cu2+ and carbon tetrachloride by more than 100-fold. The increase in the lag time was smaller for nitrobenzene and 4-nitroacetophenone, which stoichiometrically require more iron and for which the PVA membrane has a higher permeability. The effect of Fe(0) was even smaller for CrO4(2-) because of its slow reaction. Forty-five percent of the iron, based on the content in the dry membrane prior to hydration, was consumed by reaction with Cu2+ and 15% by reaction with carbon tetrachloride. Similarly, 25%, 17%, and 6% of the iron was consumed by nitrobenzene, 4-nitroacetophenone, and CrO4(2-), respectively. These percentages approximately double when the loss of iron during membrane hydration is considered. The permeability of the Fe(0)/PVA membrane after breakthrough was within a factor of 3 for that of pure PVA, consistent with theory. These results suggest that polymer membranes with embedded Fe(0) have potential as practical contaminant barriers.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources