Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase
- PMID: 15113000
- DOI: 10.1016/j.chembiol.2004.01.001
Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase
Abstract
The gene cluster encoding biosynthesis of the clinically important glycopeptide antibiotic teicoplanin has been cloned from Actinoplanes teichomyceticus. Forty-nine putative open reading frames (ORFs) were identified within an 89 kbp genetic locus and assigned roles in teicoplanin biosynthesis, export, resistance, and regulation. Two ORFs, designated orfs 1 and 10*, showed significant homology to known glycosyltransferases. When heterologously expressed in Escherichia coli, these glycosyltransferases were shown to catalyze the transfer of UDP-(N-acetyl)-glucosamine onto, respectively, 3-chloro-beta-hydroxytyrosine-6 (3-Cl-6betaHty) and 4-hydroxyphenylglycine-4 (4Hpg) of the teicoplanin heptapeptide aglycone. The product of another ORF, orf11*, was demonstrated in vitro to transfer n-acetyl-, n-butyryl-, and n-octanoyl-groups from acyl-CoA donors either to a free UDP-aminosugar or to an aminosugar moiety in the teicoplanin pseudoaglycone, thus identifying Orf11* as the key acyltransferase in teicoplanin maturation. These findings should accelerate the combinatorial engineering of new and improved glycopeptide drugs.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical