Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar-Apr;3(2):282-8.
doi: 10.1021/pr034059r.

Use of proteomics to discover novel markers of cardiac allograft rejection

Affiliations

Use of proteomics to discover novel markers of cardiac allograft rejection

Svetlana Borozdenkova et al. J Proteome Res. 2004 Mar-Apr.

Abstract

Endomyocardial biopsy remains the most reliable method of detecting rejection following cardiac transplantation. Despite numerous attempts to detect rejection using a blood assay, none have proved reliable enough to replace the biopsy. Here, we have investigated the hypothesis that proteomics has the potential to reveal many molecules which are upregulated in the heart during rejection, some of which may serve as novel blood markers of rejection. Initially, sequential cardiac biopsies (33 in total) from 4 patients were analysed by two-dimensional gel electrophoresis according to whether they showed rejection (n = 16) or no rejection (n = 17); over 100 proteins were found to be upregulated by between 2- and 50-fold during rejection. Of these, 13 were identified and were found to be cardiac specific or heat shock proteins. Two of these (alphaB-crystallin, tropomyosin) were measured by ELISA in the sera of 17 patients followed for 3 months after their transplants. Mean levels of alphaB-crystallin and tropomyosin were significantly higher in sera associated with biopsies showing 1A (p = 0.007) or all grades of rejection (p = 0.022) compared to no rejection. These studies demonstrate that proteomics is a powerful method that can be used to identify novel serum markers of human cardiac allograft rejection.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources