Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 5;52(9):2485-9.
doi: 10.1021/jf030698a.

Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil

Affiliations

Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil

Neda Mimica-Dukic et al. J Agric Food Chem. .

Abstract

The present study describes antimicrobial and free radical scavenging capacity (RSC) together with the effects on lipid peroxidation (LP) of Melissa officinalis essential oil. The chemical profile of essential oil was evaluated by the means of gas chromatography-mass spectrometry (GC-MS) and thin-layer chromatography (TLC). RSC was assessed measuring the scavenging activity of essential oil on the 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) and OH(*) radicals. The effect on LP was evaluated following the activities on Fe(2+)/ascorbate and Fe(2+)/H(2)O(2) systems of induction. The antimicrobial activity was tested against 13 bacterial strains and six fungi. The examined essential oil exhibited very strong RSC, reducing the DPPH radical formation (IC(50) = 7.58 microg/mL) and OH radical generation (IC(50) = 1.74 microg/mL) in a dose-dependent manner. According to the GC-MS and TLC (dot-blot techniques), the most powerful scavenging compounds were monoterpene aldehydes and ketones (neral/geranial, citronellal, isomenthone, and menthone) and mono- and sesquiterpene hydrocarbons (E-caryophyllene). Very strong inhibition of LP, particularly in the Fe(2+)/H(2)O(2) system of induction (94.59% for 2.13 microg/mL), was observed in both cases, also in a dose-dependent manner. The most effective antibacterial activity was expressed on a multiresistant strain of Shigella sonei. A significant rate of antifungal activity was exhibited on Trichophyton species.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources