Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;287(2):F224-30.
doi: 10.1152/ajprenal.00427.2003. Epub 2004 Apr 27.

Inhibition of Na-K-ATPase in thick ascending limbs by NO depends on O2- and is diminished by a high-salt diet

Affiliations
Free article

Inhibition of Na-K-ATPase in thick ascending limbs by NO depends on O2- and is diminished by a high-salt diet

Marisela Varela et al. Am J Physiol Renal Physiol. 2004 Aug.
Free article

Abstract

A high-salt diet enhances nitric oxide (NO)-induced inhibition of transport in the thick ascending limb (THAL). Long exposures to NO inhibit Na-K-ATPase in cultured cells. We hypothesized that NO inhibits THAL Na-K-ATPase after long exposures and a high-salt diet would augment this effect. Rats drank either tap water or 1% NaCl for 7-10 days. Na-K-ATPase activity was assessed by measuring ouabain-sensitive ATP hydrolysis by THAL suspensions. After 2 h, spermine NONOate (SPM; 5 microM) reduced Na-K-ATPase activity from 0.44 +/- 0.03 to 0.30 +/- 0.04 nmol P(i).microg protein(-1).min(-1) in THALs from rats on a normal diet (P < 0.03). Nitroglycerin also reduced Na-K-ATPase activity (P < 0.04). After 20 min, SPM had no effect (change -0.07 +/- 0.05 nmol P(i).microg protein(-1).min(-1)). When rats were fed high salt, SPM did not inhibit Na-K-ATPase after 120 min. To investigate whether ONOO(-) formed by NO reacting with O(2)(-) was involved, we measured O(2)(-) production. THALs from rats on normal and high salt produced 35.8 +/- 0.3 and 23.7 +/- 0.8 nmol O(2)(-).min(-1).mg protein(-1), respectively (P < 0.01). Because O(2)(-) production differed, we studied the effects of the O(2)(-) scavenger tempol. In the presence of 50 microM tempol, SPM did not inhibit Na-K-ATPase after 120 min (0.50 +/- 0.05 vs. 0.52 +/- 0.07 nmol P(i).microg protein(-1).min(-1)). Propyl gallate, another O(2)(-) scavenger, also prevented SPM-induced inhibition of Na-K-ATPase activity. SPM inhibited pump activity in tubules from rats on high salt when O(2)(-) levels were increased with xanthine oxidase and hypoxanthine. We concluded that NO inhibits Na-K-ATPase after long exposures when rats are on a normal diet and this inhibition depends on O(2)(-). NO donors do not inhibit Na-K-ATPase in THALs from rats on high salt due to decreased O(2)(-) production.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources