Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;135(3):375-84.
doi: 10.1093/jb/mvh045.

Thermus thermophilus MutS2, a MutS paralogue, possesses an endonuclease activity promoted by MutL

Affiliations
Free article

Thermus thermophilus MutS2, a MutS paralogue, possesses an endonuclease activity promoted by MutL

Kenji Fukui et al. J Biochem. 2004 Mar.
Free article

Abstract

The mismatch repair system (MMR) recognizes and corrects mismatched or unpaired bases caused mainly by DNA polymerase, and contributes to the fidelity of DNA replication in living cells. In Escherichia coli, the MutHLS system is known to function in MMR, and homologues of MutS and MutL are widely conserved in almost all organisms. However, the MutH endonuclease has not been found in the majority of organisms. Such organisms, including Thermus thermophilus HB8, often possess the so-called MutS2 protein, which is highly homologous to MutS but contains an extra C-terminal stretch. To elucidate the function of MutS2, we overexpressed and purified T. thermophilus MutS2 (ttMutS2). ttMutS2 demonstrated the ability to bind double-stranded (ds) DNA, but, unlike ttMutS, ttMutS2 showed no specificity for mismatched duplexes. ttMutS2 ATPase activity was also detected and was stimulated by dsDNA. Our results also showed that ttMutS2 incises dsDNA. ttMutS2 incises not only oligo dsDNA but also plasmid DNA, suggesting that ttMutS2 possesses an endonuclease activity. At low concentrations, the incision activity was not retained, but was promoted by T. thermophilus MutL.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data