Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Apr;30(2):205-13.
doi: 10.1055/s-2004-825634.

Preclinical animal models for hemophilia gene therapy: predictive value and limitations

Affiliations
Review

Preclinical animal models for hemophilia gene therapy: predictive value and limitations

Fiona E M Rawle et al. Semin Thromb Hemost. 2004 Apr.

Abstract

Hemophilia A and B are excellent candidate disorders for the application of somatic cell gene therapy. One of the major advantages in the preclinical development of hemophilia gene therapy strategies has been the availability of several animal models for both hemophilia A and B. These models recapitulate many of the phenotypic aspects of human hemophilia and have proven to be very informative in exploring the efficacy and safety of gene therapy. Considerable progress has been made in the design of gene therapy protocols, and over the last 5 years it has been shown that long-term phenotypic correction, with sustained therapeutic levels of factor VIII (FVIII) and factor IX (FIX), can be attained in FVIII- and FIX-deficient mice and dogs using various viral vector-mediated gene therapy approaches. These animal models also have elucidated potential complications of gene therapy protocols, including acute vector-associated toxicities and the induction of neutralizing antibodies to the FVIII and FIX transgene products. Nevertheless, although the preclinical paradigm of hemophilic mouse followed by hemophilic dog studies has proven to be extremely helpful in evaluating the efficacy and safety of potential clinical gene therapy protocols, several limitations to these animal models still exist. This review presents a summary of the animal models available for hemophilia gene therapy, and highlights the various strengths and weaknesses of these models.

PubMed Disclaimer

Similar articles

Cited by

Publication types