Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May;9(5):747-56.
doi: 10.1016/j.ymthe.2004.02.012.

Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy

Affiliations
Free article

Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy

Jeffrey L Spees et al. Mol Ther. 2004 May.
Free article

Abstract

Adult stem cells from human bone marrow stroma, referred to as mesenchymal stem cells or marrow stromal cells (hMSCs), are attractive candidates for clinical use. The optimal conditions for hMSC expansion require medium supplemented with fetal calf serum (FCS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FCS proteins. By a sensitive fluorescence-based assay we determined that 7 to 30 mg of FCS proteins are associated with a standard preparation of 100 million hMSCs, a dosage that probably will be needed for clinical therapies. Here we present ex vivo growth conditions for hMSCs that reduce the FCS proteins to less than 100 ng per 100 million hMSCs, approximately a 100,000-fold reduction. The cells maintain their proliferative capacity and sustain their ability for multilineage differentiation. Experiments in rats demonstrate that rat MSCs grown in 20% FCS induce a substantial humoral response after repeated administrations, whereas cells grown under the conditions described in this study reduce the immunogenicity in terms of IgG response over 1000-fold to barely detectable levels. Our results have the potential to dramatically improve cellular and genetic therapies using hMSCs and perhaps other cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources