Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May;50(5):435-43.
doi: 10.1016/j.jinsphys.2004.03.001.

Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae)

Affiliations

Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae)

Tanja H Schuler et al. J Insect Physiol. 2004 May.

Abstract

A range of crops have been transformed with delta-endotoxin genes from Bacillus thuringiensis (Bt) to produce transgenic plants with high levels of resistance to lepidopteran pests. Parasitoids are important natural enemies of lepidopteran larvae and the effects of Bt plants on these non-target insects have to be investigated to avoid unnecessary disruption of biological control. This study investigated the effects of Cry1Ac-expressing transgenic oilseed rape (Brassica napus) on the solitary braconid endoparasitoid Cotesia plutellae in small-scale laboratory experiments. C. plutellae is an important natural enemy of the diamondback moth (Plutella xylostella), the most important pest of brassica crops world-wide. Bt oilseed rape caused 100% mortality of a Bt-susceptible P. xylostella strain but no mortality of the Bt-resistant P. xylostella strain NO-QA. C. plutellae eggs laid in Bt-susceptible hosts feeding on Bt leaves hatched but premature host mortality did not allow C. plutellae larvae to complete their development. In contrast, C. plutellae developed to maturity in Bt-resistant hosts fed on Bt oilseed rape leaves and there was no effect of Bt plants on percentage parasitism, time to emergence from hosts, time to adult emergence and percentage adult emergence from cocoons. Weights of female progeny after development in Bt-resistant hosts did not differ between plant types but male progeny was significantly heavier on wildtype plants in one of two experiments. The proportion of female progeny was significantly higher on Bt plants in the first experiment with Bt-resistant hosts but this effect was not observed again when the experiment was repeated.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources