Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;287(2):L366-73.
doi: 10.1152/ajplung.00011.2004. Epub 2004 Apr 30.

Influenza virus inhibits ENaC and lung fluid clearance

Affiliations
Free article

Influenza virus inhibits ENaC and lung fluid clearance

Xi-Juan Chen et al. Am J Physiol Lung Cell Mol Physiol. 2004 Aug.
Free article

Abstract

Fluid-free alveolar space is critical for normal gas exchange. Influenza virus alters fluid transport across respiratory epithelia producing rhinorrhea, middle ear effusions, and alveolar flooding. However, the mechanism of fluid retention remains unclear. We investigated influenza virus strain A/PR/8/34, which can attach and enter mammalian cells but is incapable of viral replication and productive infection in mammalian epithelia, on epithelial sodium channels (ENaC) in rat alveolar type II (ATII) cells. In parallel, we determined the effects of virus on amiloride-sensitive (i.e., ENaC-mediated) fluid clearance in rat lungs in vivo. Although influenza virus did not change the inulin permeability of ATII monolayers, it rapidly reduced the net volume transport across monolayers. Virus reduced the open probability of single ENaC channels in apical cell-attached patches. U-73122, a phospholipase C (PLC) inhibitor, and PP2, a Src inhibitor, blocked the effect of virus on ENaC. GF-109203X, a protein kinase C (PKC) inhibitor, also blocked the effect, suggesting a PKC-mediated mechanism. In parallel, intratracheal administration of influenza virus produced a rapid inhibition of amiloride-sensitive (i.e., ENaC-dependent) lung fluid transport. Together, these results show that influenza virus rapidly inhibits ENaC in ATII cells via a PLC- and Src-mediated activation of PKC but does not increase epithelial permeability in this same rapid time course. We speculate that this rapid inhibition of ENaC and formation of edema when the virus first attaches to the alveolar epithelium might facilitate subsequent influenza infection and may exacerbate influenza-mediated alveolar flooding that can lead to acute respiratory failure and death.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources