Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 May;55(5):627-38.
doi: 10.1002/ana.20049.

Expression of CCR7 in multiple sclerosis: implications for CNS immunity

Affiliations
Comparative Study

Expression of CCR7 in multiple sclerosis: implications for CNS immunity

Pia Kivisäkk et al. Ann Neurol. 2004 May.

Abstract

It is unclear how immune cells traffic between the lymphoid compartment and the central nervous system (CNS), which lacks lymphatic vessels and is shielded by the blood-brain barrier. We studied the expression of CCR7, a chemokine receptor required for migration of T cells and dendritic cells (DCs) to lymphoid organs, in the CNS of patients with multiple sclerosis (MS) to gain insight into pathways for CNS immune cell trafficking. Inflamed MS lesions contained numerous CCR7+ myeloid cells expressing major histocompatibility complex class II, CD68 and CD86, consistent with maturing DCs. CCR7+ DCs also were identified in cerebrospinal fluid (CSF). These observations suggested that the afferent limb of CNS immunity is comprised, in part, of DCs, which are generated within the CNS and migrate to deep cervical lymph nodes through the CSF after antigen capture. Ninety percent of CSF T cells expressed CCR7 and CSF from patients with MS was relatively depleted of CCR7-negative effector-memory T cells. In contrast, all T cells in parenchymal MS lesions lacked CCR7, indicating local retention and differentiation of central-memory T cells upon restimulation by antigen within the CNS. These data suggested that the efferent limb of CNS immunity is executed by central-memory T cells, which enter CSF directly from the circulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources