Carbon nutrition of Escherichia coli in the mouse intestine
- PMID: 15123798
- PMCID: PMC409935
- DOI: 10.1073/pnas.0307888101
Carbon nutrition of Escherichia coli in the mouse intestine
Abstract
Whole-genome expression profiling revealed Escherichia coli MG1655 genes induced by growth on mucus, conditions designed to mimic nutrient availability in the mammalian intestine. Most were nutritional genes corresponding to catabolic pathways for nutrients found in mucus. We knocked out several pathways and tested the relative fitness of the mutants for colonization of the mouse intestine in competition with their wild-type parent. We found that only mutations in sugar pathways affected colonization, not phospholipid and amino acid catabolism, not gluconeogenesis, not the tricarboxylic acid cycle, and not the pentose phosphate pathway. Gluconate appeared to be a major carbon source used by E. coli MG1655 to colonize, having an impact on both the initiation and maintenance stages. N-acetylglucosamine and N-acetylneuraminic acid appeared to be involved in initiation, but not maintenance. Glucuronate, mannose, fucose, and ribose appeared to be involved in maintenance, but not initiation. The in vitro order of preference for these seven sugars paralleled the relative impact of the corresponding metabolic lesions on colonization: gluconate > N-acetylglucosamine > N-acetylneuraminic acid = glucuronate > mannose > fucose > ribose. The results of this systematic analysis of nutrients used by E. coli MG1655 to colonize the mouse intestine are intriguing in light of the nutrient-niche hypothesis, which states that the ecological niches within the intestine are defined by nutrient availability. Because humans are presumably colonized with different commensal strains, differences in nutrient availability may provide an open niche for infecting E. coli pathogens in some individuals and a barrier to infection in others.
Figures


Similar articles
-
Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine.Infect Immun. 2008 Mar;76(3):1143-52. doi: 10.1128/IAI.01386-07. Epub 2008 Jan 7. Infect Immun. 2008. PMID: 18180286 Free PMC article.
-
L-fucose stimulates utilization of D-ribose by Escherichia coli MG1655 DeltafucAO and E. coli Nissle 1917 DeltafucAO mutants in the mouse intestine and in M9 minimal medium.Infect Immun. 2007 Nov;75(11):5465-75. doi: 10.1128/IAI.00822-07. Epub 2007 Aug 20. Infect Immun. 2007. PMID: 17709419 Free PMC article.
-
Mouse intestine selects nonmotile flhDC mutants of Escherichia coli MG1655 with increased colonizing ability and better utilization of carbon sources.Infect Immun. 2005 Dec;73(12):8039-49. doi: 10.1128/IAI.73.12.8039-8049.2005. Infect Immun. 2005. PMID: 16299298 Free PMC article.
-
Nitrogen assimilation by E. coli in the mammalian intestine.mBio. 2024 Mar 13;15(3):e0002524. doi: 10.1128/mbio.00025-24. Epub 2024 Feb 21. mBio. 2024. PMID: 38380942 Free PMC article.
-
Nutrition of Escherichia coli within the intestinal microbiome.EcoSal Plus. 2024 Dec 12;12(1):eesp00062023. doi: 10.1128/ecosalplus.esp-0006-2023. Epub 2024 Jan 11. EcoSal Plus. 2024. PMID: 38417452 Free PMC article. Review.
Cited by
-
Mechanism of NanR gene repression and allosteric induction of bacterial sialic acid metabolism.Nat Commun. 2021 Mar 31;12(1):1988. doi: 10.1038/s41467-021-22253-6. Nat Commun. 2021. PMID: 33790291 Free PMC article.
-
Parallel exploitation of diverse host nutrients enhances Salmonella virulence.PLoS Pathog. 2013;9(4):e1003301. doi: 10.1371/journal.ppat.1003301. Epub 2013 Apr 25. PLoS Pathog. 2013. PMID: 23633950 Free PMC article.
-
Transcriptional Regulation of the Outer Membrane Porin Gene ompW Reveals its Physiological Role during the Transition from the Aerobic to the Anaerobic Lifestyle of Escherichia coli.Front Microbiol. 2016 May 31;7:799. doi: 10.3389/fmicb.2016.00799. eCollection 2016. Front Microbiol. 2016. PMID: 27303386 Free PMC article.
-
Function and expression of an N-acetylneuraminic acid-inducible outer membrane channel in Escherichia coli.J Bacteriol. 2005 Mar;187(6):1959-65. doi: 10.1128/JB.187.6.1959-1965.2005. J Bacteriol. 2005. PMID: 15743943 Free PMC article.
-
Toxin-antitoxin regulation: bimodal interaction of YefM-YoeB with paired DNA palindromes exerts transcriptional autorepression.Nucleic Acids Res. 2007;35(1):325-39. doi: 10.1093/nar/gkl1028. Epub 2006 Dec 14. Nucleic Acids Res. 2007. PMID: 17170003 Free PMC article.
References
-
- Finegold, S. M., Sutter, V. L. & Mathisen, G. E. (1983) in Human Intestinal Microflora in Health and Disease, ed. Hentges, D. J. (Academic, New York), pp. 3-31.
-
- Relman, D. A. & Falkow, S. (2001) Trends Microbiol. 9, 206-208. - PubMed
-
- Borrelio, S. P. (1986) in Microbial Metabolism in the Digestive Tract, ed. Hill, M. J. (CRC, Boca Raton, FL), pp. 2-16.
-
- Bryant, M. P. (1974) Am. J. Clin. Nutr. 27, 1313-1319. - PubMed
-
- Hill, M. J. (1995) in Role of Gut Bacteria in Human Toxicology and Pharmacology, ed. Hill, M. J. (Taylor and Francis, London), pp. 3-18.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases