A protonmotive force as the source of energy for galactoside transport in energy depleted Escherichia coli
- PMID: 15125
- DOI: 10.1007/BF01869407
A protonmotive force as the source of energy for galactoside transport in energy depleted Escherichia coli
Abstract
An artificially produced electrochemical potential difference for protons (portonmotive force) provided the energy for the transport of galactosides in Escherichia coli cells which were depleted of their endogenous energy reserves. The driving force for the entry of protons was provided by either a transmembrane pH gradient or a membrane potential. The pH gradient across the membrane was created by acidifying the external medium. The membrane potential (inside negative) was established by the outward diffusion of potassium (in the presence of valinomycin) or by the inward diffusion of the permeant thiocyanate ion. The magnitude of the electrochemical potential difference for protons agreed well with magnitude of the chemical potential difference of the lactose analog, thiomethylgalactoside. The observations are consistent with the view that the carrier-mediated entry of each galactoside molecule is accompanied by the entry of one proton.
Similar articles
-
A novel type of coupling between proline and galactoside transport in Escherichia coli.Membr Biochem. 1978;1(1-2):61-72. doi: 10.3109/09687687809064159. Membr Biochem. 1978. PMID: 388152
-
Proton-coupled accumulation of galactoside in Streptococcus lactis 7962.Proc Natl Acad Sci U S A. 1973 Oct;70(10):2866-9. doi: 10.1073/pnas.70.10.2866. Proc Natl Acad Sci U S A. 1973. PMID: 4200725 Free PMC article.
-
Differences in uncoupling effects associated with the uptake of lactose and dansyl-galactoside in Escherichia coli membrane: active transport versus specific binding.Arch Biochem Biophys. 1980 Jun;202(1):126-36. doi: 10.1016/0003-9861(80)90414-2. Arch Biochem Biophys. 1980. PMID: 6994654 No abstract available.
-
Active transport of Ca2+ in bacteria: bioenergetics and function.Mol Cell Biochem. 1981 Apr 27;36(2):65-84. doi: 10.1007/BF02354906. Mol Cell Biochem. 1981. PMID: 6113540 Review.
-
[Secondary active transport].Biochimie. 1986 Mar;68(3):357-65. doi: 10.1016/s0300-9084(86)80002-5. Biochimie. 1986. PMID: 3017449 Review. French.
Cited by
-
Requirement for membrane potential in active transport of glutamine by Escherichia coli.J Bacteriol. 1979 Jan;137(1):221-5. doi: 10.1128/jb.137.1.221-225.1979. J Bacteriol. 1979. PMID: 153897 Free PMC article.
-
Reduction of membrane potential, an immediate effect of colicin K.Proc Natl Acad Sci U S A. 1978 May;75(5):2483-7. doi: 10.1073/pnas.75.5.2483. Proc Natl Acad Sci U S A. 1978. PMID: 27788 Free PMC article.
-
Sucrose transport by the Escherichia coli lactose carrier.J Bacteriol. 1979 Nov;140(2):395-9. doi: 10.1128/jb.140.2.395-399.1979. J Bacteriol. 1979. PMID: 40957 Free PMC article.
-
Similarity in effects of Na+ gradients and membrane potentials on D-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rattit intestinal mucosal cells.J Membr Biol. 1978 May 3;40(3):269-90. doi: 10.1007/BF02002972. J Membr Biol. 1978. PMID: 660646
-
Glutamate transport driven by an electrochemical gradient of sodium ions in Escherichia coli.J Bacteriol. 1977 Sep;131(3):848-53. doi: 10.1128/jb.131.3.848-853.1977. J Bacteriol. 1977. PMID: 330502 Free PMC article.