Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jul;100(1):115-35.
doi: 10.1085/jgp.100.1.115.

Effects of low myoplasmic Mg2+ on calcium binding by parvalbumin and calcium uptake by the sarcoplasmic reticulum in frog skeletal muscle

Affiliations

Effects of low myoplasmic Mg2+ on calcium binding by parvalbumin and calcium uptake by the sarcoplasmic reticulum in frog skeletal muscle

V Jacquemond et al. J Gen Physiol. 1992 Jul.

Abstract

The effects of low intracellular free Mg2+ on the myoplasmic calcium removal properties of skeletal muscle were studied in voltage-clamped frog skeletal muscle fibers by analyzing the changes in intracellular calcium and magnesium due to membrane depolarization under various conditions of internal free [Mg2+]. Batches of fibers were internally equilibrated with cut end solutions containing two calcium indicators, antipyrylazo III (AP III) and fura-2, and different concentrations of free Mg2+ (25 microM-1 mM) obtained by adding appropriate total amounts of ATP and magnesium to the solutions. Changes in AP III absorbance were used to monitor [Ca2+] and [Mg2+] transients, whereas fura-2 fluorescence was mostly used to monitor resting [Ca2+]. Shortly after applying an internal solution containing less than 60 microM free Mg2+ to the cut ends of depolarized fibers most of the fibers exhibited spontaneous repetitive movements, suggesting that free internal Mg2+ might affect the activity of the sarcoplasmic reticulum (SR) calcium channels at rest. The spontaneous contractions generally subsided. In polarized fibers the maximal amplitude of the calcium transient elicited by a depolarizing pulse was about the same whatever the internal [Mg2+], but its decay after the end of the pulse slower in low [Mg2+]. In low [Mg2+] (less than 0.14 mM), the mean rate constant of decay obtained from fitting a single exponential plus a constant to the decay of the calcium transients was approximately 30% of its value in the control fibers (1 mM internal [Mg2+]). A model characterizing the main calcium removal properties of a frog skeletal muscle fiber, including the SR pump and the Ca-Mg sites on parvalbumin, was fitted to the decay of the calcium transients. Results of the fits show that in low internal [Mg2+] the slowing of the decay of the calcium transient can be well predicted by both a decreased rate of SR calcium uptake and an expected decreased resting magnesium occupancy of parvalbumin leading to a reduced contribution of parvalbumin to the overall rate of calcium removal. These results are thus consistent with the known properties of parvalbumin as a Ca-Mg buffer and furthermore suggest that in an intact portion of a muscle fiber, the activity of the SR calcium pump can be affected by the level of free Mg2+.

PubMed Disclaimer

Similar articles

Cited by

Publication types