Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;36(1):29-41.
doi: 10.1016/j.ceca.2003.11.008.

The sarcoplasmic reticulum and sarcolemma together form a passive Ca2+ trap in colonic smooth muscle

Affiliations

The sarcoplasmic reticulum and sarcolemma together form a passive Ca2+ trap in colonic smooth muscle

Karen N Bradley et al. Cell Calcium. 2004 Jul.

Abstract

In smooth muscle, active Ca(2+) uptake into regions of sarcoplasmic reticulum (SR) which are closely apposed to the sarcolemma has been proposed to substantially limit the increase in the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) following Ca(2+) influx, i.e. the 'superficial buffer barrier hypothesis'. The present study has re-examined this proposal. The results suggest that the SR close to the sarcolemma acts as a passive barrier to Ca(2+) influx limiting [Ca(2+)](c) changes; for this, SR Ca(2+) pump activity is not required. In single voltage-clamped colonic myocytes, sustained opening of the ryanodine receptor (RyR) (and depletion of the SR) using ryanodine increased the amplitude of depolarisation-evoked Ca(2+) transients and accelerated the rate of [Ca(2+)](c) decline following depolarisation. These results could be explained by a reduction in the Ca(2+) buffer power of the cytosol taking place when RyR are opened (i.e. the SR is 'leaky'). Indeed, determination of the Ca(2+) buffer power confirmed it was reduced by approximately 40%. Inhibition of the SR Ca(2+) pump (with thapsigargin) also depleted the SR of Ca(2+) but did not reduce the Ca(2+) buffer power or increase depolarisation-evoked Ca(2+) transients and slowed (rather than accelerated) Ca(2+) removal. However, thapsigargin prevented the ryanodine-induced increase in [Ca(2+)](c) decline following depolarisation. Together, these results suggest that when the SR was rendered 'leaky' (a) more of the Ca(2+) entering the cell reached the bulk cytoplasm and (b) Ca(2+) was removed more quickly at the end of cell activation. Under physiological circumstances in the absence of blocking drugs, it is proposed that the SR limits the [Ca(2+)](c) increase following influx without the need for active Ca(2+) uptake. The SR and sarcolemma may form a passive physical barrier to Ca(2+) influx, a Ca(2+) trap, which limits the [Ca(2+)](c) rise occurring during depolarisation by about 50% and from which the ion only slowly escapes into the main part of the cytoplasm.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources