Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;49(7):591-4.
doi: 10.1016/j.archoralbio.2003.12.009.

The expression of fibroblast growth factor receptor-3 in synovial osteochondromatosis of the temporomandibular joint

Affiliations

The expression of fibroblast growth factor receptor-3 in synovial osteochondromatosis of the temporomandibular joint

Itaru Tojyo et al. Arch Oral Biol. 2004 Jul.

Abstract

Primary synovial osteochondromatosis (PSC) is a disease of unknown aetiology. It was reported recently that expression of fibroblast growth factor receptor-3 (FGFR-3) was observed specifically in PSC. We classified six cases of synovial osteochondromatosis (SC) of the temporomandibular joint (TMJ) into two types of SC, PSC (five cases) and secondary synovial osteochondromatosis (SSC) (one case), by means of clinical findings and haematoxylin and eosin stain. The five PSC cases were classified into three different phases according to Milgram's classification. Immunohistochemical staining of FGFR-3 was carried out for each SC case, along with specimens of internal derangement (ID) of the TMJ, and normal articular disc and synovial membrane. FGFR-3 was found in all three phases of PSC, but not in SSC, ID or normal TMJ. Moreover, in a comparison between cultured synovial cells of PSC (Phase III) and ID, reverse transcription-polymerase chain reaction revealed a stronger positive reaction in PSC. These results indicate that the synovial membrane in Phase III PSC can produce cartilage nodules, as in Phases I and II.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources