Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 9;279(28):29628-38.
doi: 10.1074/jbc.M403940200. Epub 2004 May 4.

Identification of a trafficking motif involved in the stabilization and polarization of P2X receptors

Affiliations
Free article

Identification of a trafficking motif involved in the stabilization and polarization of P2X receptors

Séverine Chaumont et al. J Biol Chem. .
Free article

Abstract

Extracellular ATP-gated channels (P2X receptors) define the third major family of ionotropic receptors, and they are expressed widely in nerve cells, muscles, and endocrine and exocrine glands. P2X subunits have two membrane-spanning domains, and a receptor is thought to be formed by oligomerization of three subunits. We have identified a conserved motif in the cytoplasmic C termini of P2X subunits that is necessary for their surface expression; mutations in this motif result in a marked reduction of the receptors at the plasma membrane because of a rapid internalization. Transfer of the motif to a reporter protein (CD(4)) enhances the surface expression of the chimera, indicating that this motif is likely involved in the stabilization of P2X receptor at the cell surface. In neurons, mutated P2X(2) subunits showed reduced membrane expression and an altered axodendritic distribution. This motif is also present in intracellular regions of other membrane proteins, such as in the third intracellular loop of some G protein-coupled receptors, suggesting that it might be involve in their cellular stabilization and polarization.

PubMed Disclaimer

Publication types

MeSH terms