Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 May 5;96(9):662-72.
doi: 10.1093/jnci/djh123.

Apoptosis as a novel target for cancer chemoprevention

Affiliations
Review

Apoptosis as a novel target for cancer chemoprevention

Shi-Yong Sun et al. J Natl Cancer Inst. .

Abstract

Cancer chemopreventive agents are typically natural products or their synthetic analogs that inhibit the transformation of normal cells to premalignant cells or the progression of premalignant cells to malignant cells. These agents are believed to function by modulating processes associated with xenobiotic biotransformation, with the protection of cellular elements from oxidative damage, or with the promotion of a more differentiated phenotype in target cells. However, an increasing number of chemopreventive agents (e.g., certain retinoids, nonsteroidal anti-inflammatory drugs, polyphenols, and vanilloids) have been shown to stimulate apoptosis in premalignant and malignant cells in vitro or in vivo. Apoptosis is arguably the most potent defense against cancer because it is the mechanism used by metazoans to eliminate deleterious cells. Many chemopreventive agents appear to target signaling intermediates in apoptosis-inducing pathways. Inherently, the process of carcinogenesis selects against apoptosis to initiate, promote, and perpetuate the malignant phenotype. Thus, targeting apoptosis pathways in premalignant cells--in which these pathways are still relatively intact--may be an effective method of cancer prevention. In this review, we construct a paradigm supporting apoptosis as a novel target for cancer chemoprevention by highlighting recent studies of several chemopreventive agents that engage apoptosis pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources