Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jun;171(6 Pt 1):2438-44.
doi: 10.1097/01.ju.0000125001.56045.6c.

Urinary tract biomaterials

Affiliations
Review

Urinary tract biomaterials

Darren T Beiko et al. J Urol. 2004 Jun.

Abstract

Purpose: As a result of endourological advances, biomaterials have become increasingly used within the urinary tract. This review article provides an update on the current status of urinary tract biomaterials, discussing issues of biocompatibility, biomaterials available for use, clinical applications and biomaterial related complications. Perspectives on future materials for use in the urinary tract are also provided.

Materials and methods: We performed a comprehensive search of the peer reviewed literature on all aspects of biomaterials in the urinary tract using PubMed and MEDLINE. All pertinent articles were reviewed in detail.

Results: Any potential biomaterial must undergo rigorous physical and biocompatibility testing prior to its commercialization and use in humans. There are currently many different bulk materials and coatings available for the manufacturing of biomaterials, although the ideal material has yet to be discovered. For use in the urinary tract, biomaterials may be formed into devices, including ureteral and urethral stents, urethral catheters and percutaneous nephrostomy tubes. Despite significant advances in basic science research involving biocompatibility issues and biofilm formation, infection and encrustation remain associated with the use of biomaterials in the urinary tract and, therefore, limit their long-term indwelling time.

Conclusions: Prosthetic devices formed from biomaterials will continue to be an essential tool in the practicing urologist's armamentarium. Ongoing research is essential to optimize biocompatibility and decrease biomaterial related complications such as infection and encrustation within the urinary tract. Future advances include biodegradables, novel coatings and tissue engineering.

PubMed Disclaimer

Substances