Determination of reduction potential of an engineered Cu(A) azurin by cyclic voltammetry and spectrochemical titrations
- PMID: 15127249
- DOI: 10.1007/s00775-004-0547-y
Determination of reduction potential of an engineered Cu(A) azurin by cyclic voltammetry and spectrochemical titrations
Abstract
The reduction potentials of an engineered CuA azurin in its native and thermally denatured states have been determined using cyclic voltammetry and spectrochemical titrations. Using a 4,4'-dipyridyl disulfide modified gold electrode, the reduction potentials of native and thermally denatured CuA azurin are the same within the experimental error (422 +/- 5 and 425 +/- 5 mV vs. NHE, respectively, in 50 mM ammonium acetate buffer, pH 5.1, 300 mM NaCl, 25 degrees C), indicating that the potential is that of a nonnative state. In contrast, using a didodecyldimethylammonium bromide (DDAB) film-pyrolytic graphite edge (PGE) electrode, the reduction potentials of native and thermally denatured CuA azurin have been determined to be 271 +/- 7 mV (50 mM ammonium acetate buffer, pH 5.1, 4 degrees C) and 420 +/- 1 mV (50 mM ammonium acetate buffer, pH 5.1, 25 degrees C), respectively. Spectroscopic redox titration using [Ru(NH3)5Py]2+ resulted in a reduction potential (254+/-4 mV) (50 mM ammonium acetate buffer, pH 5.1, 4 degrees C) similar to the value obtained using the DDAB film-PGE electrochemical method. Complete reoxidation of [Ru(NH3)5Py]2+-reduced CuA azurin is also consistent with the conclusion that this spectrochemical titration method using [Ru(NH3)5Py]2+ measures the reduction potential of native CuA azurin.
Copyright 2004 SBIC
Similar articles
-
Redox properties of an engineered purple Cu(A) azurin.Arch Biochem Biophys. 2002 Aug 1;404(1):158-62. doi: 10.1016/s0003-9861(02)00282-5. Arch Biochem Biophys. 2002. PMID: 12127080
-
Axial methionine has much less influence on reduction potentials in a CuA center than in a blue copper center.J Am Chem Soc. 2005 May 25;127(20):7274-5. doi: 10.1021/ja0501114. J Am Chem Soc. 2005. PMID: 15898751
-
High-potential states of blue and purple copper proteins.Biochim Biophys Acta. 1998 Nov 10;1388(2):437-43. doi: 10.1016/s0167-4838(98)00205-2. Biochim Biophys Acta. 1998. PMID: 9858778
-
Electron tunneling in rhenium-modified Pseudomonas aeruginosa azurins.Biochim Biophys Acta. 2004 Apr 12;1655(1-3):59-63. doi: 10.1016/j.bbabio.2003.06.010. Biochim Biophys Acta. 2004. PMID: 15100017 Review.
-
Developments in spectrography: spectrochemical methods.Prog Chem Toxicol. 1967;3:219-44. doi: 10.1016/b978-1-4831-9988-7.50011-1. Prog Chem Toxicol. 1967. PMID: 4867083 Review. No abstract available.
Cited by
-
Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex.Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4486-93. doi: 10.1073/pnas.1603330113. Epub 2016 Jun 22. Proc Natl Acad Sci U S A. 2016. PMID: 27335466 Free PMC article.
-
Cu(A) centers and their biosynthetic models in azurin.J Biol Inorg Chem. 2010 May;15(4):461-83. doi: 10.1007/s00775-010-0625-2. Epub 2010 Feb 19. J Biol Inorg Chem. 2010. PMID: 20169379 Review.
-
A Binuclear CuA Center Designed in an All α-Helical Protein Scaffold.J Am Chem Soc. 2020 Aug 12;142(32):13779-13794. doi: 10.1021/jacs.0c04226. Epub 2020 Jul 29. J Am Chem Soc. 2020. PMID: 32662996 Free PMC article.
-
pH-dependent transition between delocalized and trapped valence states of a CuA center and its possible role in proton-coupled electron transfer.Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12842-7. doi: 10.1073/pnas.0403473101. Epub 2004 Aug 23. Proc Natl Acad Sci U S A. 2004. PMID: 15326290 Free PMC article.
-
Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.Chem Rev. 2022 Jul 27;122(14):11974-12045. doi: 10.1021/acs.chemrev.2c00106. Epub 2022 Jul 11. Chem Rev. 2022. PMID: 35816578 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources