Siderophore electrochemistry: relation to intracellular iron release mechanism
- PMID: 151277
- PMCID: PMC392821
- DOI: 10.1073/pnas.75.8.3551
Siderophore electrochemistry: relation to intracellular iron release mechanism
Abstract
Previous studies have shown that there is a major difference between the iron release mechanism of enterobactin, a catechol-based siderophore, and that of the hydroxamate-based siderophores such as ferrichrome. For ferric enterobactin there is an esterase that hydrolyzes the ligand during iron release. In contrast, iron is released by the hydroxamate-based siderophores and the ligands are reused in subsequent iron transport. It has been suggested that release of iron by hydroxamates occurs by reduction to the ferrous complex, a process that does not occur for ferric enterobactin. Cyclic voltammograms of ferrichrome A and ferrioxamine B exhibit reversible one-electron waves with pH-independent formal potentials (Ef-vs. the normal hydrogen electrode) -446 and -454 mV, respectively, within the range of physiological reductants. Ferric enterobactin also shows a reversible one-electron wave (at pH greater than 10) with Ef = -986 mV vs. the normal hydrogen electrode. From the pH dependence of this potential we estimate a reduction potential of -750 mV at pH 7. In sharp contrast to the value for the ferric hydroxamates, this value is well below the range of physiological reducing agents. The results demonstrate that the observed hydrolysis of enterobactin is a necessary prerequisite to in vivo release of iron from the siderophore via ferric ion reduction.
Similar articles
-
Enterobactin protonation and iron release: structural characterization of the salicylate coordination shift in ferric enterobactin.J Am Chem Soc. 2006 Jul 12;128(27):8920-31. doi: 10.1021/ja062046j. J Am Chem Soc. 2006. PMID: 16819888 Free PMC article.
-
Catechol Siderophore Transport by Vibrio cholerae.J Bacteriol. 2015 Sep;197(17):2840-9. doi: 10.1128/JB.00417-15. Epub 2015 Jun 22. J Bacteriol. 2015. PMID: 26100039 Free PMC article.
-
Characterization of siderophore-mediated iron transport in Geotrichum candidum, a non-siderophore producer.Biol Met. 1990;2(4):209-13. doi: 10.1007/BF01141361. Biol Met. 1990. PMID: 2143917
-
Siderophores of bacteria and fungi.Microbiol Sci. 1984 Apr;1(1):9-14. Microbiol Sci. 1984. PMID: 6242877 Review.
-
Enterobactin: an archetype for microbial iron transport.Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3584-8. doi: 10.1073/pnas.0630018100. Epub 2003 Mar 24. Proc Natl Acad Sci U S A. 2003. PMID: 12655062 Free PMC article. Review.
Cited by
-
Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria.Proc Natl Acad Sci U S A. 2012 May 29;109(22):8400-4. doi: 10.1073/pnas.1112921109. Epub 2012 May 10. Proc Natl Acad Sci U S A. 2012. PMID: 22582172 Free PMC article.
-
Ferric iron reductases and their contribution to unicellular ferrous iron uptake.J Inorg Biochem. 2021 May;218:111407. doi: 10.1016/j.jinorgbio.2021.111407. Epub 2021 Feb 25. J Inorg Biochem. 2021. PMID: 33684686 Free PMC article. Review.
-
Enterobactin protonation and iron release: structural characterization of the salicylate coordination shift in ferric enterobactin.J Am Chem Soc. 2006 Jul 12;128(27):8920-31. doi: 10.1021/ja062046j. J Am Chem Soc. 2006. PMID: 16819888 Free PMC article.
-
Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion.J Bacteriol. 1984 May;158(2):496-502. doi: 10.1128/jb.158.2.496-502.1984. J Bacteriol. 1984. PMID: 6233258 Free PMC article.
-
Electrochemical and Solution Structural Characterization of Fe(III) Azotochelin Complexes: Examining the Coordination Behavior of a Tetradentate Siderophore.Inorg Chem. 2022 Dec 5;61(48):19172-19182. doi: 10.1021/acs.inorgchem.2c02777. Epub 2022 Oct 17. Inorg Chem. 2022. PMID: 36251475 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources