Unraveling DNA helicases. Motif, structure, mechanism and function
- PMID: 15128295
- DOI: 10.1111/j.1432-1033.2004.04094.x
Unraveling DNA helicases. Motif, structure, mechanism and function
Erratum in
- Eur J Biochem. 2004 Aug;271(15):3283
Abstract
DNA helicases are molecular 'motor' enzymes that use the energy of NTP hydrolysis to separate transiently energetically stable duplex DNA into single strands. They are therefore essential in nearly all DNA metabolic transactions. They act as essential molecular tools for the cellular machinery. Since the discovery of the first DNA helicase in Escherichia coli in 1976, several have been isolated from both prokaryotic and eukaryotic systems. DNA helicases generally bind to ssDNA or ssDNA/dsDNA junctions and translocate mainly unidirectionally along the bound strand and disrupt the hydrogen bonds between the duplexes. Most helicases contain conserved motifs which act as an engine to drive DNA unwinding. Crystal structures have revealed an underlying common structural fold for their function. These structures suggest the role of the helicase motifs in catalytic function and offer clues as to how these proteins can translocate and unwind DNA. The genes containing helicase motifs may have evolved from a common ancestor. In this review we cover the conserved motifs, structural information, mechanism of DNA unwinding and translocation, and functional aspects of DNA helicases.
Similar articles
-
Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery.Eur J Biochem. 2004 May;271(10):1835-48. doi: 10.1111/j.1432-1033.2004.04093.x. Eur J Biochem. 2004. PMID: 15128294 Free PMC article. Review.
-
Helicases: an overview.Methods Mol Biol. 2010;587:1-12. doi: 10.1007/978-1-60327-355-8_1. Methods Mol Biol. 2010. PMID: 20225138 Review.
-
Mechanisms of helicase-catalyzed DNA unwinding.Annu Rev Biochem. 1996;65:169-214. doi: 10.1146/annurev.bi.65.070196.001125. Annu Rev Biochem. 1996. PMID: 8811178 Review.
-
Helicases as molecular motors: An insight.Physica A. 2006 Dec 1;372(1):70-83. doi: 10.1016/j.physa.2006.05.014. Epub 2006 Jun 5. Physica A. 2006. PMID: 32288077 Free PMC article.
-
Structure and function of hexameric helicases.Annu Rev Biochem. 2000;69:651-97. doi: 10.1146/annurev.biochem.69.1.651. Annu Rev Biochem. 2000. PMID: 10966472 Review.
Cited by
-
From Transcriptome to Noncoding RNAs: Implications in ALS Mechanism.Neurol Res Int. 2012;2012:278725. doi: 10.1155/2012/278725. Epub 2012 Jun 17. Neurol Res Int. 2012. PMID: 22778949 Free PMC article.
-
Efficient 5'-3' DNA end resection by HerA and NurA is essential for cell viability in the crenarchaeon Sulfolobus islandicus.BMC Mol Biol. 2015 Feb 14;16:2. doi: 10.1186/s12867-015-0030-z. BMC Mol Biol. 2015. PMID: 25880130 Free PMC article.
-
Characterization of Bombyx mori parvo-like virus non-structural protein NS1.Virus Genes. 2009 Dec;39(3):396-402. doi: 10.1007/s11262-009-0402-x. Epub 2009 Oct 9. Virus Genes. 2009. PMID: 19816762
-
New genes from old: redeployment of dUTPase by herpesviruses.J Virol. 2005 Oct;79(20):12880-92. doi: 10.1128/JVI.79.20.12880-12892.2005. J Virol. 2005. PMID: 16188990 Free PMC article.
-
Family A DNA Polymerase Phylogeny Uncovers Diversity and Replication Gene Organization in the Virioplankton.Front Microbiol. 2018 Dec 14;9:3053. doi: 10.3389/fmicb.2018.03053. eCollection 2018. Front Microbiol. 2018. PMID: 30619142 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources