Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 May 15;159(10):926-34.
doi: 10.1093/aje/kwh131.

Marginal structural models for analyzing causal effects of time-dependent treatments: an application in perinatal epidemiology

Affiliations
Comparative Study

Marginal structural models for analyzing causal effects of time-dependent treatments: an application in perinatal epidemiology

Lisa M Bodnar et al. Am J Epidemiol. .

Abstract

Marginal structural models (MSMs) are causal models designed to adjust for time-dependent confounding in observational studies of time-varying treatments. MSMs are powerful tools for assessing causality with complicated, longitudinal data sets but have not been widely used by practitioners. The objective of this paper is to illustrate the fitting of an MSM for the causal effect of iron supplement use during pregnancy (time-varying treatment) on odds of anemia at delivery in the presence of time-dependent confounding. Data from pregnant women enrolled in the Iron Supplementation Study (Raleigh, North Carolina, 1997-1999) were used. The authors highlight complexities of MSMs and key issues epidemiologists should recognize before and while undertaking an analysis with these methods and show how such methods can be readily interpreted in existing software packages, including SAS and Stata. The authors emphasize that if a data set with rich information on confounders is available, MSMs can be used straightforwardly to make robust inferences about causal effects of time-dependent treatments/exposures in epidemiologic research.

PubMed Disclaimer

Publication types

MeSH terms