Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 16;279(29):30369-74.
doi: 10.1074/jbc.M400549200. Epub 2004 May 5.

Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein

Affiliations
Free article

Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein

P Christian Schulze et al. J Biol Chem. .
Free article

Abstract

Increased intracellular reactive oxygen species (ROS) contribute to vascular disease and pro-atherosclerotic effects of diabetes mellitus may be mediated by oxidative stress. Several ROS-scavenging systems tightly control cellular redox balance; however, their role in hyperglycemia-induced oxidative stress is unclear. A ubiquitous antioxidative mechanism for regulating cellular redox balance is thioredoxin, a highly conserved thiol reductase that interacts with an endogenous inhibitor, thioredoxin-interacting protein (Txnip). Here we show that hyperglycemia inhibits thioredoxin ROS-scavenging function through p38 MAPK-mediated induction of Txnip. Overexpression of Txnip increased oxidative stress, while Txnip gene silencing restored thioredoxin activity in hyperglycemia. Diabetic animals exhibited increased vascular expression of Txnip and reduced thioredoxin activity, which normalized with insulin treatment. These results provide evidence for the impairment of a major ROS-scavenging system in hyperglycemia. These studies implicate reduced thioredoxin activity through interaction with Txnip as an important mechanism for vascular oxidative stress in diabetes mellitus.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources