Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 6;429(6987):49-52.
doi: 10.1038/nature02495.

Dislocation-driven surface dynamics on solids

Affiliations

Dislocation-driven surface dynamics on solids

S Kodambaka et al. Nature. .

Abstract

Dislocations are line defects that bound plastically deformed regions in crystalline solids. Dislocations terminating on the surface of materials can strongly influence nanostructural and interfacial stability, mechanical properties, chemical reactions, transport phenomena, and other surface processes. While most theoretical and experimental studies have focused on dislocation motion in bulk solids under applied stress and step formation due to dislocations at surfaces during crystal growth, very little is known about the effects of dislocations on surface dynamics and morphological evolution. Here we investigate the near-equilibrium dynamics of surface-terminated dislocations using low-energy electron microscopy. We observe, in real time, the thermally driven nucleation and shape-preserving growth of spiral steps rotating at constant temperature-dependent angular velocities around cores of dislocations terminating on the (111) surface of TiN in the absence of applied external stress or net mass change. We attribute this phenomenon to point-defect migration from the bulk to the surface along dislocation lines. Our results demonstrate that dislocation-mediated surface roughening can occur even in the absence of deposition or evaporation, and provide fundamental insights into mechanisms controlling nanostructural stability.

PubMed Disclaimer

LinkOut - more resources