Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Mar-Apr;49(2):322-38.

[Photobiophysics of furanocoumarins]

[Article in Russian]
Affiliations
  • PMID: 15129631
Review

[Photobiophysics of furanocoumarins]

[Article in Russian]
A Ia Potapenko et al. Biofizika. 2004 Mar-Apr.

Abstract

Furocoumarins (psoralens) are photosensitizers of plant origin, which increase the sensitivity of biological objects to near ultraviolet (UV-A, 320-400 nm). In combination with UV-A, they are successfully used for treating many dermal and autoimmune diseases (PUVA therapy and photophoresis). Along with therapeutic effects, the furocoumarin photochemotherapy induces a number of side-effects (erythema, edema, hyperpigmentation, and premature aging of skin). All photobiological effects of furocoumarins result from their photochemical reactions. Therefore, in order to advance the therapy, it is necessary to know the photochemical mechanisms of induction of both side- and therapeutic effects. The types of photoreactions of furocoumarins classified with respect to reactive photoproducts interacting with substrate were considered. Primary emphasis was placed on reactions proceeding with the participation of photooxidation products of furocoumarins. Among these photoproducts, at least two types can be distinguished. Some of them possess membranotoxic properties, others produce the immunosuppressory action in vivo. The photochemical mechanisms of the formation of the photoproducts of furocoumarins are different. It was found that, by varying the illumination conditions (intensity of UV-A radiation or the concentration of the photosensitizer), it is possible to obtain the photoproducts of furocoumarins that have either membranotoxic or immunosuppressory properties. It was found that the mechanisms of the immunosuppressive action of the photooxidation products of furocoumarins have some features in common with those underlying the PUVA therapy and photophoresis. It is assumed that the photochemical basis of the therapeutic action of furocoumarins is the reactions with the involvement of the products of their photooxidation.

PubMed Disclaimer

Similar articles