Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003;2(4):209-17.

Application of z-score transformation to Affymetrix data

Affiliations
  • PMID: 15130792
Comparative Study

Application of z-score transformation to Affymetrix data

Chris Cheadle et al. Appl Bioinformatics. 2003.

Abstract

Z-score transformation has been successfully used as a normalisation procedure for microarray data generated using radioactively labelled probes with spotted cDNA arrays. One of the advantages of the z-score transformation method is that it provides a way of standardising data across a wide range of experiments and allows the comparison of microarray data independent of the original hybridisation intensities. The feasibility of applying z-score transformation to other types of linear microarray data, specifically that generated using fluorescently labelled probes with Affymetrix chips, was tested in three separate scenarios and is discussed here. In the first scenario, Affymetrix data from the NCBI (National Center for Biotechnology Information) GEO (Gene Expression Omnibus) database was used to demonstrate that z-score transformation preserved the essential phylogenetic grouping between primate species' fibroblast gene expression baseline measurements. The second scenario employed z-score transformation on data consisting of a series of genes spiked-in at known concentrations and arrayed in a Latin square format. We were able to reconstruct the entire set of spike-in concentration curves without prior knowledge of their format by using z-score transformation as the normalisation process. Finally, we show that z-score transformed data maintains the integrity of separate samples from different experiments and laboratories, as demonstrated by accurate grouping of clustered data according to sample identity. We conclude that data normalised by z-score transformation can be easily used with Affymetrix data without noticeable loss of information content. Z-score transformation provides a useful tool for comparisons between experiments and between laboratories that use the Affymetrix platform.

PubMed Disclaimer

MeSH terms