EEG signal modeling using adaptive Markov process amplitude
- PMID: 15132500
- DOI: 10.1109/TBME.2004.826602
EEG signal modeling using adaptive Markov process amplitude
Abstract
In this paper, an adaptive Markov process amplitude algorithm is used to model and simulate electroencephalogram (EEG) signals. EEG signal modeling is used as a tool to identify pathophysiological EEG changes potentially useful in clinical diagnosis. The least mean square algorithm is adopted to continuously estimate the parameters of a first-order Markov process model. EEG signals recorded from rodent brains during injury and recovery following global cerebral ischemia are utilized as input signals to the model. The EEG was recorded in a controlled experimental brain injury model of hypoxic-ischemic cardiac arrest. The signals from the injured brain during various phases of injury and recovery were modeled. Results show that the adaptive model is accurate in simulating EEG signal variations following brain injury. The dynamics of the model coefficients successfully capture the presence of spiking and bursting in EEG.
Similar articles
-
Monitoring of global cerebral ischemia using wavelet entropy rate of change.IEEE Trans Biomed Eng. 2005 Dec;52(12):2119-22. doi: 10.1109/TBME.2005.857634. IEEE Trans Biomed Eng. 2005. PMID: 16370057
-
An adaptive error modeling scheme for the lossless compression of EEG signals.IEEE Trans Inf Technol Biomed. 2008 Sep;12(5):587-94. doi: 10.1109/TITB.2007.907981. IEEE Trans Inf Technol Biomed. 2008. PMID: 18779073
-
Wavelet entropy for subband segmentation of EEG during injury and recovery.Ann Biomed Eng. 2003 Jun;31(6):653-8. doi: 10.1114/1.1575757. Ann Biomed Eng. 2003. PMID: 12797614
-
[The basic study of noninvasive detecting the ischemic/hypoxic cerebral injury].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 1999 Jun;16(2):192-7, 217. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 1999. PMID: 12552662 Review. Chinese.
-
EEG artifact removal-state-of-the-art and guidelines.J Neural Eng. 2015 Jun;12(3):031001. doi: 10.1088/1741-2560/12/3/031001. Epub 2015 Apr 2. J Neural Eng. 2015. PMID: 25834104 Review.
Cited by
-
Microstates of the cortical brain-heart axis.Hum Brain Mapp. 2023 Dec 1;44(17):5846-5857. doi: 10.1002/hbm.26480. Epub 2023 Sep 9. Hum Brain Mapp. 2023. PMID: 37688575 Free PMC article.
-
Linking brain-heart interactions to emotional arousal in immersive virtual reality.Psychophysiology. 2024 Dec;61(12):e14696. doi: 10.1111/psyp.14696. Epub 2024 Oct 14. Psychophysiology. 2024. PMID: 39400349 Free PMC article.
-
Advanced Modeling and Signal Processing Methods in Brain-Computer Interfaces Based on a Vector of Cyclic Rhythmically Connected Random Processes.Sensors (Basel). 2023 Jan 9;23(2):760. doi: 10.3390/s23020760. Sensors (Basel). 2023. PMID: 36679557 Free PMC article.
-
Cardiac sympathetic-vagal activity initiates a functional brain-body response to emotional arousal.Proc Natl Acad Sci U S A. 2022 May 24;119(21):e2119599119. doi: 10.1073/pnas.2119599119. Epub 2022 May 19. Proc Natl Acad Sci U S A. 2022. PMID: 35588453 Free PMC article.
-
Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal.Sensors (Basel). 2018 Feb 26;18(3):697. doi: 10.3390/s18030697. Sensors (Basel). 2018. PMID: 29495415 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources