Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Mar-Apr;385(3-4):205-16.
doi: 10.1515/BC.2004.014.

O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide

Affiliations
Review

O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide

Stephen L Archer et al. Biol Chem. 2004 Mar-Apr.

Abstract

The ductus arteriosus (DA) is a fetal artery that allows blood ejected from the right ventricle to bypass the pulmonary circulation in utero. At birth, functional closure of the DA is initiated by an O2-induced, vasoconstrictor mechanism which, though modulated by endothelial-derived endothelin and prostaglandins, is intrinsic to the smooth muscle cell (DASMC) [Michelakis et al., Circ. Res. 91 (2002); pp. 478-486]. As pO2 increases, a mitochondrial O2-sensor (electron transport chain complexes I or III) is activated, which generates a diffusible redox mediator (H2O2). H2O2 inhibits voltage-gated K+ channels (Kv) in DASMC. The resulting membrane depolarization activates L-type Ca2+ channels, thereby promoting vasoconstriction. Conversely, inhibiting mitochondrial ETC complexes I or III mimics hypoxia, depolarizing mitochondria, and decreasing H2O2 levels. The resulting increase in K+ current hyperpolarizes the DASMC and relaxes the DA. We have developed two models for study of the DA's O2-sensor pathway, both characterized by decreased O2-constriction and Kv expression: (i) preterm rabbit DA, (ii) ionically-remodeled, human term DA. The O2-sensitive channels Kv1.5 and Kv2.1 are important to DA O2-constriction and overexpression of either channel enhances DA constriction in these models. Understanding this O2-sensing pathway offers therapeutic targets to modulate the tone and patency of human DA in vivo, thereby addressing a common form of congenital heart disease in preterm infants.

PubMed Disclaimer

Publication types

MeSH terms