Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jun;91(6):2390-9.
doi: 10.1152/jn.00925.2003.

Frequency-dependent processing in the vibrissa sensory system

Affiliations
Free article
Review

Frequency-dependent processing in the vibrissa sensory system

Christopher I Moore. J Neurophysiol. 2004 Jun.
Free article

Abstract

The vibrissa sensory system is a key model for investigating principles of sensory processing. Specific frequency ranges of vibrissa motion, generated by rodent sensory behaviors (e.g., active exploration or resting) and by stimulus features, characterize perception by this system. During active exploration, rats typically sweep their vibrissae at approximately 4-12 Hz against and over tactual surfaces, and during rest or quiescence, their vibrissae are typically still (<1 Hz). When a vibrissa is swept over an object, microgeometric surface features (e.g., grains on sandpaper) likely create higher frequency vibrissa vibrations that are greater than or equal to several hundred Hertz. In this article, I first review thalamic and cortical neural responses to vibrissa stimulation at 1-40 Hz. I then propose that neural dynamics optimize the detection of stimuli in low-frequency contexts (e.g., 1 Hz) and the discrimination of stimuli in the whisking frequency range. In the third section, I describe how the intrinsic biomechanical properties of vibrissae, their ability to resonate when stimulated at specific frequencies, may promote detection and discrimination of high-frequency inputs, including textured surfaces. In the final section, I hypothesize that distinct low- and high-frequency processing modes may exist in the somatosensory cortex (SI), such that neural responses to stimuli at 1-40 Hz do not necessarily predict responses to higher frequency inputs. In total, these studies show that several frequency-specific mechanisms impact information transmission in the vibrissa sensory system and suggest that these properties play a crucial role in perception.

PubMed Disclaimer

LinkOut - more resources