Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004;49(5-6):65-71.

Nitrification of high-strength ammonium wastewater by a fluidized-bed reactor

Affiliations
  • PMID: 15137408

Nitrification of high-strength ammonium wastewater by a fluidized-bed reactor

A E F Botrous et al. Water Sci Technol. 2004.

Abstract

A laboratory-scale fluidized-bed reactor with an external aeration loop was used for nitrification of high-strength ammonium wastewater (up to 500 mg NH4-N/L). The results demonstrated that the system is capable of handling ammonium removal rates of up to 2.5 kg NH4-N/m3 x d, while removal efficiencies were as high as 98% and independent of the applied ammonium loading rates. Ammonium loading rates higher than 2.5 kg NH4-N/m3 x d resulted in decreased ammonium removal efficiency. The data show that near complete ammonium removal occurred at DO concentrations as low as 0.3-0.5 mg/L. However, the nitrite-nitrogen fraction in the effluent increased from 3.5% to 23.2% when the DO dropped from 1.0 mg/L to approximately 0.4 mg/L, respectively. The high specific removal rates in this system are one order of magnitude higher than that of suspended-growth systems. This can reduce the supplementary reactor volumes required for nitrification to less than 10% of that needed in conventional activated sludge systems. These results clearly indicate the potential economic gains that could be achieved through implementation of this technology.

PubMed Disclaimer

MeSH terms