Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;47(1):21-9.
doi: 10.1002/glia.20019.

Hypoosmotic swelling increases protein tyrosine nitration in cultured rat astrocytes

Affiliations

Hypoosmotic swelling increases protein tyrosine nitration in cultured rat astrocytes

Freimut Schliess et al. Glia. 2004 Jul.

Abstract

Astrocyte swelling is observed in different types of brain injury. We studied a potential contribution of swelling to protein tyrosine nitration (PTN) by using cultured rat astrocytes exposed to hypoosmotic (205 mosmol/L) medium. Hypoosmolarity (2 h) increases total PTN by about 2-fold in 2 h. The hypoosmotic PTN is significantly inhibited by the NMDA receptor antagonist MK-801, the nitric oxide synthase (NOS) inhibitor L-NMMA, the extracellular Ca2+ chelator EGTA and the calmodulin antagonist W13, suggesting the involvement of NMDA receptor activation, influx of extracellular Ca2+ and Ca2+/calmodulin-dependent NO synthesis. Further, superoxide dismutase plus catalase and uric acid strongly inhibit hypoosmotic PTN, suggesting the involvement of the toxic metabolite peroxynitrite (ONOO-) as a nitrating agent. Hypoosmotic astrocyte swelling rapidly stimulates generation of reactive oxygen intermediates; this process is prevented by MK-801 and EGTA. In addition, MK-801 inhibits the hypoosmotic elevation of [Ca2+]i. The findings support the view that astrocyte swelling as induced, for example, by toxins relevant for hepatic encephalopathy is sufficient to produce oxidative stress and PTN and thus contributes to altered astroglial and neuronal function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources