Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy
- PMID: 15140937
- PMCID: PMC6729383
- DOI: 10.1523/JNEUROSCI.0797-04.2004
Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy
Abstract
Intracellular accumulations of filamentous tau inclusions are neuropathological hallmarks of neurodegenerative diseases known as tauopathies. The discovery of multiple pathogenic tau gene mutations in many kindreds with familial frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) unequivocally confirmed the central role of tau abnormalities in the etiology of neurodegenerative disorders. To examine the effects of tau gene mutations and the role of tau abnormalities in neurodegenerative tauopathies, transgenic (Tg) mice were engineered to express the longest human tau isoform (T40) with or without the R406W mutation (RW and hWT Tg mice, respectively) that is pathogenic for FTDP-17 in several kindreds. RW but not hWT tau Tg mice developed an age-dependent accumulation of insoluble filamentous tau aggregates in neuronal perikarya of the cerebral cortex, hippocampus, cerebellum, and spinal cord. Significantly, CNS axons in RW mice contained reduced levels of tau when compared with hWT mice, and this was linked to retarded axonal transport and increased accumulation of an insoluble pool of RW but not hWT tau. Furthermore, RW but not hWT mice demonstrated neurodegeneration and a reduced lifespan. These data indicate that the R406W mutation causes reduced binding of this mutant tau to microtubules, resulting in slower axonal transport. This altered tau function caused by the RW mutation leads to increased accumulation and reduced solubility of RW tau in an age-dependent manner, culminating in the formation of filamentous intraneuronal tau aggregates similar to that observed in tauopathy patients.
Figures








Similar articles
-
Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform.Neuron. 1999 Nov;24(3):751-62. doi: 10.1016/s0896-6273(00)81127-7. Neuron. 1999. PMID: 10595524
-
Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy.Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9980-5. doi: 10.1073/pnas.1533448100. Epub 2003 Jul 18. Proc Natl Acad Sci U S A. 2003. PMID: 12872001 Free PMC article.
-
Tau and axonopathy in neurodegenerative disorders.Neuromolecular Med. 2002;2(2):131-50. doi: 10.1385/NMM:2:2:131. Neuromolecular Med. 2002. PMID: 12428808 Review.
-
Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a "P301L" tau knockin mouse.Neurobiol Aging. 2012 Mar;33(3):621.e1-621.e15. doi: 10.1016/j.neurobiolaging.2011.02.014. Epub 2011 Apr 13. Neurobiol Aging. 2012. PMID: 21492964
-
Analysis of tauopathies with transgenic mice.Trends Mol Med. 2001 Oct;7(10):467-70. doi: 10.1016/s1471-4914(01)02123-2. Trends Mol Med. 2001. PMID: 11597522 Review.
Cited by
-
Pathogenic Effects of Impaired Retrieval between the Endoplasmic Reticulum and Golgi Complex.Int J Mol Sci. 2019 Nov 9;20(22):5614. doi: 10.3390/ijms20225614. Int J Mol Sci. 2019. PMID: 31717602 Free PMC article. Review.
-
Decreased Protein Quality Control Promotes the Cognitive Dysfunction Associated With Aging and Environmental Insults.Front Neurosci. 2018 Nov 1;12:753. doi: 10.3389/fnins.2018.00753. eCollection 2018. Front Neurosci. 2018. PMID: 30443201 Free PMC article.
-
Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy.J Clin Invest. 2008 May;118(5):1877-89. doi: 10.1172/JCI34308. J Clin Invest. 2008. PMID: 18431510 Free PMC article.
-
Tau Isoform-Driven CBD Pathology Transmission in Oligodendrocytes in Humanized Tau Mice.Front Neurol. 2021 Jan 15;11:589471. doi: 10.3389/fneur.2020.589471. eCollection 2020. Front Neurol. 2021. PMID: 33519674 Free PMC article.
-
Non-invasive, in vivo monitoring of neuronal transport impairment in a mouse model of tauopathy using MEMRI.Neuroimage. 2013 Jan 1;64:693-702. doi: 10.1016/j.neuroimage.2012.08.065. Epub 2012 Aug 31. Neuroimage. 2013. PMID: 22960250 Free PMC article.
References
-
- Barghorn S, Zheng-Fischhofer Q, Ackmann M, Biernat J, von Bergen M, Mandelkow E, Mandelkow E (2000) Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochemistry 39: 11714-11721. - PubMed
-
- Bugiani O, Murrell JR, Giaccone G, Hasegawa M, Ghigo G, Tabaton M, Morbin M, Primavera A, Carella F, Solaro C, Grisoli M, Savoiardo MG, Spillantini F, Tagliavini M, Goedert M, Ghetti B (1999) Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 58: 667-677. - PubMed
-
- Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS, Miller B, Li D, Payami H, Awert F, Markopoulou K, Andreadis A, D'Souza I, Lee VM-Y, Reed L, Trojanowski JQ, Zhukareva V, Bird T, Schellenberg G, Wilhelmsen KC (1998) Pathogenic implications of mutations in the tau gene in pallidopontonigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci USA 95: 13103-13107. - PMC - PubMed
-
- Connell JW, Gibb GM, Betts JC, Blackstock JC, Gallo J, Lovestone S, Hutton M, Anderton BH (2001) Effects of FTDP-17 mutations on the in vitro phosphorylation of tau by glycogen synthase kinase 3β identified by mass spectrometry demonstrate certain mutations exert long-range conformational changes. FEBS Lett 493: 40-44. - PubMed
-
- Crowther RA, Goedert M (2000) Abnormal tau-containing filaments in neurodegenerative diseases. J Struct Biol 130: 271-279. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous