A universal evolutionary index for amino acid changes
- PMID: 15140949
- DOI: 10.1093/molbev/msh158
A universal evolutionary index for amino acid changes
Abstract
Different nonsynonymous changes may be under different selective pressure during evolution. Of the 190 possible interchanges among the 20 amino acids, only 75 can be attained by a single-base substitution. An evolutionary index (EI) can be empirically computed for each of the 75 elementary changes as the likelihood of substitutions, relative to that of synonymous changes. We used 280, 1,306, 2,488, and 309 orthologous genes from primates (human versus Old World monkey), rodents (mouse versus rat), yeast (S. cerevisiae versus S. paradoxus), and Drosophila (D. melanogaster versus D. simulans), respectively, to estimate the EIs. In each data set, EI varies more than 10-fold, and the correlation coefficients of EIs from the pairwise comparisons are high (e.g., r = 0.91 between rodent and yeast). The high correlations suggest that the amino acid properties are strong determinants of protein evolution, irrespective of the identities of the proteins or the taxa of interest. However, these properties are not well captured in conventional measures of amino acid exchangeability. We, therefore, propose a universal index of exchange (U): for any large data set, its EI can be expressed as U*R, where R is the average Ka/Ks for that data set. The codon-based, empirically determined EI (i.e., U*R) makes much better predictions on protein evolution than do previous methods.
Similar articles
-
A new method for estimating nonsynonymous substitutions and its applications to detecting positive selection.Mol Biol Evol. 2006 Feb;23(2):372-9. doi: 10.1093/molbev/msj043. Epub 2005 Oct 19. Mol Biol Evol. 2006. PMID: 16237204
-
Synonymous substitutions substantially improve evolutionary inference from highly diverged proteins.Syst Biol. 2008 Jun;57(3):367-77. doi: 10.1080/10635150802158670. Syst Biol. 2008. PMID: 18570032
-
Selective pressures at a codon-level predict deleterious mutations in human disease genes.J Mol Biol. 2006 May 19;358(5):1390-404. doi: 10.1016/j.jmb.2006.02.067. Epub 2006 Mar 15. J Mol Biol. 2006. PMID: 16584746
-
An empirical codon model for protein sequence evolution.Mol Biol Evol. 2007 Jul;24(7):1464-79. doi: 10.1093/molbev/msm064. Epub 2007 Mar 30. Mol Biol Evol. 2007. PMID: 17400572
-
Patterns of polymorphism and divergence from noncoding sequences of Drosophila melanogaster and D. simulans: evidence for nonequilibrium processes.Mol Biol Evol. 2005 Jan;22(1):51-62. doi: 10.1093/molbev/msh269. Epub 2004 Sep 29. Mol Biol Evol. 2005. PMID: 15456897 Review.
Cited by
-
Convergent adaptation of the genomes of woody plants at the land-sea interface.Natl Sci Rev. 2020 Jun;7(6):978-993. doi: 10.1093/nsr/nwaa027. Epub 2020 Feb 20. Natl Sci Rev. 2020. PMID: 34692119 Free PMC article.
-
A fitness distribution law for amino-acid replacements.bioRxiv [Preprint]. 2024 Oct 15:2024.10.11.617952. doi: 10.1101/2024.10.11.617952. bioRxiv. 2024. PMID: 39464166 Free PMC article. Preprint.
-
Highly conserved regimes of neighbor-base-dependent mutation generated the background primary-structural heterogeneities along vertebrate chromosomes.PLoS One. 2008 May 14;3(5):e2145. doi: 10.1371/journal.pone.0002145. PLoS One. 2008. PMID: 18478116 Free PMC article.
-
Codon usage and selection on proteins.J Mol Evol. 2006 Nov;63(5):635-53. doi: 10.1007/s00239-005-0233-x. Epub 2006 Oct 14. J Mol Evol. 2006. PMID: 17043750
-
Two decades of suspect evidence for adaptive molecular evolution-negative selection confounding positive-selection signals.Natl Sci Rev. 2021 Dec 3;9(5):nwab217. doi: 10.1093/nsr/nwab217. eCollection 2022 May. Natl Sci Rev. 2021. PMID: 35663241 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases