Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May;20(5):577-88.
doi: 10.1016/s1074-7613(04)00106-2.

Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes

Affiliations
Free article

Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes

Vincent Das et al. Immunity. 2004 May.
Free article

Abstract

The mechanism by which T cell antigen receptors (TCR) accumulate at the immunological synapse has not been fully elucidated. Since TCRs are continuously internalized and recycled back to the cell surface, we investigated the role of polarized recycling in TCR targeting to the immunological synapse. We show here that the recycling endosomal compartment of T cells encountering activatory antigen-presenting cells (APCs) polarizes towards the T cell-APC contact site. Moreover, TCRs in transit through recycling endosomes are targeted to the immunological synapse. Inhibition of T cell polarity, constitutive TCR endocytosis, or recycling reduces TCR accumulation at the immunological synapse. Conversely, increasing the amount of TCRs in recycling endosomes before synapse formation enhanced their accumulation. Finally, we show that exocytic t-SNAREs from T cells cluster at the APC contact site and that tetanus toxin inhibits TCR accumulation at the immunological synapse, indicating that vesicle fusion mediated by SNARE complexes is involved in TCR targeting to the immunological synapse.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources