Experimentally gained insight - based proposal apropos the treatment of osteonecrosis of the femoral head
- PMID: 15142657
- DOI: 10.1016/j.mehy.2003.12.036
Experimentally gained insight - based proposal apropos the treatment of osteonecrosis of the femoral head
Abstract
An impeded blood flow through the femoral head is incriminated in the etiopathogenesis of osteonecrosis of the femoral head. The disorder is either primary (idiopathic avascular osteonecrosis) or secondary to one condition or another, say, corticosteroid medication, fracture of the neck, coagulation defects, physical or thermal damage, storage disorders, alcoholism, and infectious, autoimmune as also marrow infiltrating diseases. In the wake of the necrosis, several mediators are released in increased amounts, prime among which is the vascular endothelial growth factor. The intermediates recruit endothelial progenitor cells, macrophages, osteoclasts, fibroblasts, and osteoblasts, which, pervading throughout the necrotic areas, initiate the reparative processes. The dead, soft and hard tissular debris is substituted by fibrous - later on by hematopoietic-fatty tissue - and bone. The newly formed, appositional and intramembranous bone is deficient in its mechanical properties. The ordinary load-carrying functions suffice to deform these weakened femoral heads so that osteoarthritic changes develop. Considering contemporary assumptions of the causes of osteonecrosis, oxygenation, revascularization, and core decompression are the realistic therapeutic interventions. Necrosis of rats' femoral heads is studied as a model of osteonecrosis in both adults and children. In view of rodents' lifelong persisting physeal cartilage, vascular deprivation-induced osteonecrosis in rats mimics children's Perthes disease. The experimental model, which is well suited to test treatment modalities, has been used to investigate the effects of exposure to hyperbaric oxygen with and without non-weight bearing, medication of enoxaparin, and creation of an intraosseous conduit on the remodeling of the avascular necrotic femoral head. Intriguingly, the shape of treated rats' femoral heads is disfigured to a greater degree than that of untreated animals. This is most likely due to the reduced yield strength and elastic modulus as well as the raised strain-to-failure of the recently formed bone making up the post-necrotic femoral heads. It follows that expedited osteogenesis is, counter intuition, detrimental to maintaining the hemispherical shape of the femoral head, and thus to an articulation with congruent load-bearing surfaces. If this is indeed the case, the remodeling of the necrotic femoral head should be delayed, rather than sped up, as the present day paradigm would have it. Bearing in mind that the dead osseous structures keep their mechanical attributes for quite a while, a slowed down new bone formation would favor the gradual replacement of the necrotic by living bone. Therefore, management of the adult patients with osteonecrosis and children with Perthes disease should focus on a slowly progressive substitution so that the decline of the bone's mechanical properties is kept to a minimum. One viable therapeutic mode is a medication of inhibitors of the vascular endothelial growth factor.
Similar articles
-
Vasculature deprivation--induced osteonecrosis of the rat femoral head as a model for therapeutic trials.Theor Biol Med Model. 2005 Jul 5;2:24. doi: 10.1186/1742-4682-2-24. Theor Biol Med Model. 2005. PMID: 15996271 Free PMC article. Review.
-
Vasculature deprivation-induced osteonecrosis of rats' femoral heads associated with the formation of deep surface depressions.Eur J Orthop Surg Traumatol. 2006 Jun;16(2):95-102. doi: 10.1007/s00590-005-0055-y. Epub 2006 Feb 10. Eur J Orthop Surg Traumatol. 2006. PMID: 28755121 English.
-
Localization of vascular endothelial growth factor during the early reparative phase of the rats' vessels deprivation-induced osteonecrosis of the femoral heads.Exp Mol Pathol. 2004 Oct;77(2):145-8. doi: 10.1016/j.yexmp.2004.06.002. Exp Mol Pathol. 2004. PMID: 15351238
-
Treatment of experimental avascular necrosis of the femoral head with hyperbaric oxygen in rats: histological evaluation of the femoral heads during the early phase of the reparative process.Exp Mol Pathol. 1999 Oct;67(2):99-108. doi: 10.1006/exmp.1999.2273. Exp Mol Pathol. 1999. PMID: 10527761
-
Osteonecrosis of the femoral head. Potential treatment with growth and differentiation factors.Clin Orthop Relat Res. 1998 Oct;(355 Suppl):S314-35. Clin Orthop Relat Res. 1998. PMID: 9917651 Review.
Cited by
-
Core decompression and alendronate treatment of the osteonecrotic rat femoral head: computer-assisted analysis.Int J Exp Pathol. 2013 Jun;94(3):212-6. doi: 10.1111/iep.12022. Epub 2013 Apr 18. Int J Exp Pathol. 2013. PMID: 23594399 Free PMC article.
-
Vasculature deprivation--induced osteonecrosis of the rat femoral head as a model for therapeutic trials.Theor Biol Med Model. 2005 Jul 5;2:24. doi: 10.1186/1742-4682-2-24. Theor Biol Med Model. 2005. PMID: 15996271 Free PMC article. Review.
-
Effects of Zoledronic Acid and Vitamin E on Surgical- Induced Osteonecrosis of the Femoral Head in Rabbit.Arch Bone Jt Surg. 2018 Nov;6(6):547-553. Arch Bone Jt Surg. 2018. PMID: 30637311 Free PMC article.
-
Combined with Bone Marrow-Derived Cells and rhBMP-2 for Osteonecrosis after Femoral Neck Fractures in Children and Adolescents: A case series.Sci Rep. 2016 Aug 1;6:30730. doi: 10.1038/srep30730. Sci Rep. 2016. PMID: 27477836 Free PMC article. Clinical Trial.
-
Evaluation of a pig femoral head osteonecrosis model.J Orthop Surg Res. 2010 Mar 6;5:15. doi: 10.1186/1749-799X-5-15. J Orthop Surg Res. 2010. PMID: 20205927 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical