Development of models of active ion transport for whole-cell modelling: cardiac sodium-potassium pump as a case study
- PMID: 15142754
- DOI: 10.1016/j.pbiomolbio.2004.01.010
Development of models of active ion transport for whole-cell modelling: cardiac sodium-potassium pump as a case study
Abstract
This study presents a method for the reduction of biophysically-based kinetic models for the active transport of ions. A lumping scheme is presented which exploits the differences in timescales associated with fast and slow transitions between model states, while maintaining the thermodynamic properties of the model. The goal of this approach is to contribute to modelling of the effects of disturbances to metabolism, associated with ischaemic heart disease, on cardiac cell function. The approach is illustrated for the sodium-potassium pump in the myocyte. The lumping scheme is applied to produce a 4-state representation from the detailed 15-state model of Läuger and Apell, Eur. Biophys. J. 13 (1986) 309, for which the principles of free energy transduction are used to link the free energy released from ATP hydrolysis (deltaGATP) to the transition rates between states of the model. An iterative minimisation algorithm is implemented to determine the transition rate parameters based on the model fit to experimental data. Finally, the relationship between deltaGATP and pump cycling direction is investigated and compared with recent experimental findings.
Copyright 2004 Elsevier Ltd.
Similar articles
-
Energetics of the Na(+) pump in the heart.J Cardiovasc Electrophysiol. 2006 May;17 Suppl 1:S127-S133. doi: 10.1111/j.1540-8167.2006.00397.x. J Cardiovasc Electrophysiol. 2006. PMID: 16686667 Review.
-
Mechanistic studies of sodium pump.Arch Biochem Biophys. 2008 Aug 1;476(1):12-21. doi: 10.1016/j.abb.2008.05.017. Epub 2008 Jun 17. Arch Biochem Biophys. 2008. PMID: 18558080 Review.
-
Model of active transport of ions in cardiac cell.J Theor Biol. 2008 May 21;252(2):247-54. doi: 10.1016/j.jtbi.2008.02.006. Epub 2008 Feb 13. J Theor Biol. 2008. PMID: 18353373
-
[Principle of parametric ion separation in a molecular model of the sodium pump].Biofizika. 1980 Sep-Oct;25(5):815-20. Biofizika. 1980. PMID: 6251924 Russian.
-
The sodium, potassium-pump.Scand J Clin Lab Invest Suppl. 1986;180:11-23. Scand J Clin Lab Invest Suppl. 1986. PMID: 3012760 No abstract available.
Cited by
-
Energy-based analysis of biochemical cycles using bond graphs.Proc Math Phys Eng Sci. 2014 Nov 8;470(2171):20140459. doi: 10.1098/rspa.2014.0459. Proc Math Phys Eng Sci. 2014. PMID: 25383030 Free PMC article.
-
Species-dependent adaptation of the cardiac Na+/K+ pump kinetics to the intracellular Na+ concentration.J Physiol. 2014 Dec 15;592(24):5355-71. doi: 10.1113/jphysiol.2014.279810. Epub 2014 Oct 31. J Physiol. 2014. PMID: 25362154 Free PMC article.
-
Active transport of the Ca(2+)-pump: introduction of the temperature difference as a driving force.Eur Biophys J. 2013 May;42(5):321-31. doi: 10.1007/s00249-012-0877-6. Epub 2013 Jan 9. Eur Biophys J. 2013. PMID: 23299395
-
Kinetic and mesoscopic non-equilibrium description of the Ca(2+) pump: a comparison.Eur Biophys J. 2012 May;41(5):437-48. doi: 10.1007/s00249-012-0797-5. Epub 2012 Mar 28. Eur Biophys J. 2012. PMID: 22453991
-
Systems biology - the broader perspective.Cells. 2013 Jun 19;2(2):414-31. doi: 10.3390/cells2020414. Cells. 2013. PMID: 24709708 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical