Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;287(3):R661-9.
doi: 10.1152/ajpregu.00136.2004. Epub 2004 May 13.

Estrogen receptor-alpha expression in osmosensitive elements of the lamina terminalis: regulation by hypertonicity

Affiliations
Free article

Estrogen receptor-alpha expression in osmosensitive elements of the lamina terminalis: regulation by hypertonicity

Suwit J Somponpun et al. Am J Physiol Regul Integr Comp Physiol. 2004 Sep.
Free article

Abstract

The subfornical organ (SFO), median preoptic nucleus (MnPO), and organum vasculosum lamina terminalis (OVLT), which are associated with the lamina terminalis, are important in the control of body fluid balance. Neurons in these regions express estrogen receptor (ER)-alpha, but whether the ER-alpha neurons are activated by hypertonicity and whether hypertonicity regulates ER-alpha expression are not known. Using fluorescent, double-label immunocytochemistry, we examined the expression of ER-alpha-immunoreactivity (ir) and Fos-ir in control and water-deprived male rats. In control animals, numerous ER-alpha-positive neurons were expressed in the periphery of the SFO, in both the dorsal and ventral MnPO, and in the dorsal cap of the OVLT. Fos-positive neurons were sparse in euhydrated rats but were numerous in the SFO, MnPO, and the dorsal cap of the OVLT after 48-h water deprivation. Most ER-alpha-ir neurons in these areas were positive for Fos, indicating a significant degree of colocalization. To examine the effect of dehydration on ER-alpha expression, animals with and without lesions surrounding the anterior and ventral portion of the 3rd ventricle (AV3V) were water deprived for 48 h. Water deprivation resulted in a moderate increase in ER-alpha-ir in the SFO of sham-lesioned rats (P = 0.03) and a dramatic elevation in AV3V-lesioned animals (P < 0.05). This was probably induced by the significant increase in plasma osmolality in both dehydrated groups (P < 0.001) rather than a decrease in blood volume, because hematocrit was significantly increased only in the dehydrated sham-lesioned animals. Thus these studies implicate the osmosensitive regions of the lamina terminalis as possible targets for sex steroid effects on body fluid homeostasis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources