Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jun 4;318(3):704-9.
doi: 10.1016/j.bbrc.2004.04.080.

A prostanoid receptor EP4 agonist enhances ectopic bone formation induced by recombinant human bone morphogenetic protein-2

Affiliations
Comparative Study

A prostanoid receptor EP4 agonist enhances ectopic bone formation induced by recombinant human bone morphogenetic protein-2

Ryuichi Sasaoka et al. Biochem Biophys Res Commun. .

Abstract

The anabolic effects of prostaglandin E(2) on bone are effected through the activation of EP4, a G protein-coupled receptor. In the present study, we examined the effects of a prostanoid receptor-selective agonist (ONO-4819) in an experimental system of ectopic bone formation using recombinant human bone morphogenetic protein-2 (rhBMP-2). Collagen pellets containing rhBMP-2 were implanted onto the back muscles of mice and then treated with ONO-4819 administered every 8 h by subcutaneous injection. The ossicles elicited ectopically by rhBMP-2 in mice treated with 30 microg/kg ONO-4819 were significantly larger in size and had a higher bone mineral density and bone mineral content when compared to the controls. We also noted that the anabolic effect of ONO-4819 was seen only in the early phase of the rhBMP-2-induced bone-forming process. These experimental results indicate that the EP4 receptor agonist enhances the rhBMP-2-induced bone formation through a selective effect on early stage mesenchymal cells, which in turn may result in increased responsiveness of the host animals to rhBMP-2.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources