Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Aug;263(2 Pt 1):C313-8.
doi: 10.1152/ajpcell.1992.263.2.C313.

Interaction of calcium with plasma membrane of epithelial (MDCK) cells during junction formation

Affiliations

Interaction of calcium with plasma membrane of epithelial (MDCK) cells during junction formation

R G Contreras et al. Am J Physiol. 1992 Aug.

Abstract

We have previously shown that upon transferring confluent monolayers of Madin-Darby canine kidney (MDCK) cells from low- to normal-Ca2+ medium, cytosolic Ca2+ increases and tight junctions (TJs) assemble and seal, but the increase in cytosolic Ca2+ does not seem to be necessary for junction formation. In the present work we establish that these are in fact two independent phenomena. We first measured unidirectional Ca2+ fluxes across the plasma membrane of MDCK cells to find suitable inhibitors and tested their effects on the ability of Ca2+ to seal the TJ. Likewise, we studied a variety of multivalent cations. We observed that 1) Ca2+ triggering of junction formation does not depend on its entering the cell, 2) cations like La3+ may impair the influx of Ca2+ without affecting the sealing of TJs, and 3) only Cd2+ is able to block both Ca2+ penetration and junction formation; however, 4) Cd2+ itself cannot trigger junction formation. We interpret that Ca2+ triggers junction formation by acting mainly on an extracellular membrane site and that this site has a higher Ca2+ selectivity than the mechanisms for Ca2+ translocation across the membrane.

PubMed Disclaimer

Publication types

LinkOut - more resources