Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Nov 1;20(16):2751-8.
doi: 10.1093/bioinformatics/bth322. Epub 2004 May 14.

A neural network method for prediction of beta-turn types in proteins using evolutionary information

Affiliations
Comparative Study

A neural network method for prediction of beta-turn types in proteins using evolutionary information

Harpreet Kaur et al. Bioinformatics. .

Abstract

Motivation: The prediction of beta-turns is an important element of protein secondary structure prediction. Recently, a highly accurate neural network based method Betatpred2 has been developed for predicting beta-turns in proteins using position-specific scoring matrices (PSSM) generated by PSI-BLAST and secondary structure information predicted by PSIPRED. However, the major limitation of Betatpred2 is that it predicts only beta-turn and non-beta-turn residues and does not provide any information of different beta-turn types. Thus, there is a need to predict beta-turn types using an approach based on multiple sequence alignment, which will be useful in overall tertiary structure prediction.

Results: In the present work, a method has been developed for the prediction of beta-turn types I, II, IV and VIII. For each turn type, two consecutive feed-forward back-propagation networks with a single hidden layer have been used where the first sequence-to-structure network has been trained on single sequences as well as on PSI-BLAST PSSM. The output from the first network along with PSIPRED predicted secondary structure has been used as input for the second-level structure-to-structure network. The networks have been trained and tested on a non-homologous dataset of 426 proteins chains by 7-fold cross-validation. It has been observed that the prediction performance for each turn type is improved significantly by using multiple sequence alignment. The performance has been further improved by using a second level structure-to-structure network and PSIPRED predicted secondary structure information. It has been observed that Type I and II beta-turns have better prediction performance than Type IV and VIII beta-turns. The final network yields an overall accuracy of 74.5, 93.5, 67.9 and 96.5% with MCC values of 0.29, 0.29, 0.23 and 0.02 for Type I, II, IV and VIII beta-turns, respectively, and is better than random prediction.

Availability: A web server for prediction of beta-turn types I, II, IV and VIII based on above approach is available at http://www.imtech.res.in/raghava/betaturns/ and http://bioinformatics.uams.edu/mirror/betaturns/ (mirror site).

PubMed Disclaimer

Similar articles

Cited by