Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Sep;97(3):935-40.
doi: 10.1152/japplphysiol.00239.2004. Epub 2004 May 14.

Autonomic control of the cardiovascular system during acclimatization to high altitude: effects of sildenafil

Affiliations
Free article
Clinical Trial

Autonomic control of the cardiovascular system during acclimatization to high altitude: effects of sildenafil

Jérémy Cornolo et al. J Appl Physiol (1985). 2004 Sep.
Free article

Abstract

Both acute hypoxia and sildenafil may influence autonomic control through transient cardiovascular effects. In a double-blind study, we investigated whether sildenalfil (Sil) could interfere with cardiovascular effects of hypoxia. Twelve healthy men [placebo (Pla) n = 6; Sil, n = 6] were exposed to an altitude of 4,350 m during 6 days. Treatment was continuously administered from 6 to 8 h after arrival at altitude (3 x 40 mg/day). The autonomic control on the heart was assessed by heart rate variability (HRV) during sleep at sea level (SL) and between day 1-2 and day 5-6 in hypoxia. Arterial pressure (AP) and total peripheral resistances (TPR) were obtained during daytime. There was no statistical difference between groups in HRV, AP, and TPR throughout the study. Hypoxia induced a decrease in R-R interval and an increase in AP in both groups. Low frequency-to-high frequency ratio increased at day 1-2 (Pla, P = 0.04; Sil, P = 0.02) and day 5-6 (Pla and Sil, P = 0.04) vs. SL, whereas normalized high-frequency power decreased only in Pla (P = 0.04, day 1-2 vs. SL). Normalized low-frequency power increased at high altitude (Pla and Sil, P = 0.04, day 5-6 vs. SL). TPR decreased at day 2 in Pla (P = 0.02) and tended to normalize at day 6 (P = 0.07, day 6 vs. day 2). Acute hypoxia induced a decrease in parasympathetic and increase in sympathetic tone, which tended to be reversed with acclimatization. Sil had no deleterious effects on the cardiovascular response to high-altitude exposure and its control by the autonomic nervous system.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources