Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 23;279(30):31687-96.
doi: 10.1074/jbc.M405224200. Epub 2004 May 15.

Extracellular Zn2+ activates epithelial Na+ channels by eliminating Na+ self-inhibition

Affiliations
Free article

Extracellular Zn2+ activates epithelial Na+ channels by eliminating Na+ self-inhibition

Shaohu Sheng et al. J Biol Chem. .
Free article

Abstract

Inhibition of epithelial Na(+) channel (ENaC) activity by high concentrations of extracellular Na(+) is referred to as Na(+) self-inhibition. We investigated the effects of external Zn(2+) on whole cell Na(+) currents and on the Na(+) self-inhibition response in Xenopus oocytes expressing mouse alphabetagamma ENaC. Na(+) self-inhibition was examined by analyzing inward current decay from a peak current to a steady-state current following a fast switching of a low Na(+) (1 mm) bath solution to a high Na(+) (110 mm) solution. Our results indicate that external Zn(2+) rapidly and reversibly activates ENaC in a dose-dependent manner with an estimated EC(50) of 2 microm. External Zn(2+) in the high Na(+) bath also prevents or reverses Na(+) self-inhibition with similar affinity. Zn(2+) activation is dependent on extracellular Na(+) concentration and is absent in ENaCs containing gammaH239 mutations that eliminate Na(+) self-inhibition and in alphaS580Cbetagamma following covalent modification by a sulfhydryl-reactive reagent that locks the channels in a fully open state. In contrast, external Ni(2+) inhibition of ENaC currents appears to be additive to Na(+) self-inhibition when Ni(2+) is present in the high Na(+) bath. Pretreatment of oocytes with Ni(2+) in a low Na(+) bath also prevents the current decay following a switch to a high Na(+) bath but rendered the currents below the control steady-state level measured in the absence of Ni(2+) pretreatment. Our results suggest that external Zn(2+) activates ENaC by relieving the channel from Na(+) self-inhibition, and that external Ni(2+) mimics or masks Na(+) self-inhibition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources