Functional cardiac cell constructs on cellulose-based scaffolding
- PMID: 15147821
- DOI: 10.1016/j.biomaterials.2004.01.024
Functional cardiac cell constructs on cellulose-based scaffolding
Abstract
Cellulose and its derivatives have been successfully employed as biomaterials in various applications, including dialysis membranes, diffusion-limiting membranes in biosensors, in vitro hollow fibers perfusion systems, surfaces for cell expansion, etc. In this study, we tested the potential of cellulose acetate (CA) and regenerated cellulose (RC) scaffolds for growing functional cardiac cell constructs in culture. Specifically, we demonstrate that CA and RC surfaces are promoting cardiac cell growth, enhancing cell connectivity (gap junctions) and electrical functionality. Being optically clear and essentially non-autofluorescent, CA scaffolds did not interfere with functional optical measurements in the cell constructs. Molding to follow fine details or complex three-dimensional shapes are additional important characteristics for scaffold design in tissue engineering. Biodegradability can be controlled by hydrolysis, de-acetylization of CA and cytocompatible enzyme (cellulase) action, with glucose as a final product. Culturing of cardiac cells and growth of tissue-like cardiac constructs in vitro could benefit from the versatility and accessibility of cellulose scaffolds, combining good adhesion (comparable to the standard tissue-culture treated polystyrene), molding capabilities down to the nanoscale (comparable to the current favorite in soft lithography-polydimethylsiloxane) with controlled biodegradability.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous