Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Nov;25(26):5781-8.
doi: 10.1016/j.biomaterials.2004.01.029.

The influence of microscale topography on fibroblast attachment and motility

Affiliations
Comparative Study

The influence of microscale topography on fibroblast attachment and motility

Catherine C Berry et al. Biomaterials. 2004 Nov.

Abstract

The ability of a cell to attach and migrate on a substrate or scaffold is important in the field of tissue engineering and biomaterials, and is thus extensively studied. When considering tissue-engineering applications, a highly porous scaffold is required to guide cell growth and proliferation in three dimensions. However existing scaffolds are less than ideal for actual applications, not only as they lack mechanical strength due to pore size and have regular distribution, but also they do not ensure cell attachment, in-growth and organisation. In this study, microfabrication technology was used to create regular arrays of pits on a two-dimensional quartz surface (7, 15 and 25 microm diameter, 20 and 40 microm spacing). The patterned surface thus exhibited spatially separated mechanical edges akin to the basic structural element of a three-dimensional network, and was used as a model system for studying the effects of substrate microgeometry on fibroblast attachment and motility. Results clearly showed that fibroblast interaction with the pit edges depended on both diameter, and therefore angle of circumference, and inter pit spacing, with the largest diameter permitting cells to enter the pits. Interestingly, the highest cell proliferation rates were recorded on the smaller pits. Such information may provide details on possible pore sizes for use in synthetic tissue engineering scaffolds that aim to support fibroblast in-growth and subsequent proliferation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources