Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 May;61(5):727-33.
doi: 10.1001/archneur.61.5.727.

Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families

Affiliations
Comparative Study

Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families

Alfredo Brusco et al. Arch Neurol. 2004 May.

Abstract

Background: Autosomal dominant cerebellar ataxias are a clinical and genetically heterogeneous group of progressive neurodegenerative diseases, at present associated with 22 loci (spinocerebellar ataxia [SCA] 1-SCA8, SCA10-SCA19, SCA21, SCA22, fibroblast growth factor 14 [FGF14]-SCA, and dentatorubral-pallidoluysian atrophy [DRPLA]). The relevant gene has been identified in 12 cases (SCA1-3, SCA6-8, SCA10, SCA12, FGF14, and DRPLA), and in all but the recently identified SCA14, SCA17, PRKCG and FGF14 genes, the defect consists of the expansion of a short nucleotide repeat.

Objectives: To investigate the relative prevalence of SCA1-3, SCA6-8, SCA10, SCA12, and SCA17 gene expansions in Italian families with hereditary ataxia, specifically to verify the occurrence of SCA10, SCA12, and SCA17 in Italy; and to analyze samples from probands with negative test results at the initial screening by means of the repeat expansion detection technique to identify CAG/CTG expansions in novel loci.Patients Two hundred twenty-five unrelated Italian index cases with hereditary ataxia, most (n = 183) of whom presented with a clear dominantly transmitted trait.

Results: We found that SCA1 and SCA2 gene mutations accounted for most cases (21% and 24%, respectively). We found SCA3, SCA6, SCA7, SCA8, and SCA17 to be very rare (approximately 1% each), and no case of SCA10 or SCA12 was identified. Half of the index cases (113/225) were negative for expansions in the known SCA genes. Repeat expansion detection analysis performed on 111 of these cases showed a CAG/CTG repeat expansion of at least 50 triplets in 22 (20%). Twenty-one of 22 expansions could be attributed to length variation at 2 polymorphic loci (expanded repeat domain CAG/CTG 1 [ERDA1] or CTG repeat on chromosome 18q21.1 [CTG18.1]). In 1 patient, the expansion was assigned to the DRPLA gene.

Conclusions: The distribution of SCA1-3 and SCA6-7 gene mutations is peculiar in Italy. We found a relatively high frequency of SCA1 and SCA2 gene expansions; SCA3, SCA6, and SCA7 mutations were rare, compared with other European countries. No SCA10 or SCA12 and only a few SCA8 (2/225) and SCA17 (2/225) families were detected. In patients negative for defects in known SCA genes, repeat expansion detection data strongly suggest that, at least in our population, CAG/CTG expansions in novel genes should be considered an unlikely cause of the SCA phenotype.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms