Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 23;279(30):31780-7.
doi: 10.1074/jbc.M314005200. Epub 2004 May 17.

Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response

Affiliations
Free article

Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response

Jonathan V Rocheleau et al. J Biol Chem. .
Free article

Abstract

Glucose-stimulated insulin secretion is a multistep process dependent on beta-cell metabolic flux. Our previous studies on intact pancreatic islets used two-photon NAD(P)H imaging as a quantitative measure of the combined redox signal from NADH and NADPH (referred to as NAD(P)H). These studies showed that pyruvate, a non-secretagogue, enters beta-cells and causes a transient rise in NAD(P)H. To further characterize the metabolic fate of pyruvate, we have now developed one-photon flavoprotein microscopy as a simultaneous assay of lipoamide dehydrogenase (LipDH) autofluorescence. This flavoprotein is in direct equilibrium with mitochondrial NADH. Hence, a comparison of LipDH and NAD(P)H autofluorescence provides a method to distinguish the production of NADH, NADPH, or both. Using this method, the glucose dose response is consistent with an increase in both NADH and NADPH. In contrast, the transient rise in NAD(P)H observed with pyruvate stimulation is not accompanied by a significant change in LipDH, which indicates that pyruvate raises cellular NADPH without raising NADH. In comparison, methyl pyruvate stimulated a robust NADH and NADPH response. These data provide new evidence that exogenous pyruvate does not induce a significant rise in mitochondrial NADH. This inability likely results in its failure to produce the ATP necessary for stimulated secretion of insulin. Overall, these data are consistent with either a restricted pyruvate dehydrogenase-dependent metabolism or a buffering of the NADH response by other metabolic mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources