Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Apr;293(7-8):529-37.
doi: 10.1078/1438-4221-00298.

Superantigens: structure-function relationships

Affiliations
Review

Superantigens: structure-function relationships

Matthew D Baker et al. Int J Med Microbiol. 2004 Apr.

Abstract

Superantigens are a class of highly potent immuno-stimulatory molecules produced by Staphylococcus aureus and Streptococcus pyogenes. These toxins possess the unique ability to interact simultaneously with MHC class II molecules and T-cell receptors, forming a trimolecular complex that induces profound T-cell proliferation. The resultant massive cytokine release causes epithelial damage and leads to capillary leak and hypotension. The staphylococcal superantigens are designated staphylococcal enterotoxins A, B, C (and antigenic variants), D, E, and the recently discovered enterotoxins G to Q, and toxic shock syndrome toxin-1. The streptococcal superantigens include the pyrogenic exotoxins A (and antigenic variants), C, G-J, SMEZ, and SSA. Superantigens are implicated in several diseases including toxic shock syndrome, scarlet fever and food poisoning; and their function appears primarily to debilitate the host sufficiently to permit the causation of disease. Structural studies over the last 10 years have provided a great deal of information regarding the complex interactions of these molecules with their receptors. This, combined with the wealth of new information from genomics initiatives, have shown that, despite their common molecular architecture, superantigens are able to crosslink MHC class II molecules and T-cell receptors by a variety of subtly different ways through the use of various structural regions within each toxin.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources