Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 26;126(20):6356-62.
doi: 10.1021/ja031710i.

Oxidation of alkylarenes by nitrate catalyzed by polyoxophosphomolybdates: synthetic applications and mechanistic insights

Affiliations

Oxidation of alkylarenes by nitrate catalyzed by polyoxophosphomolybdates: synthetic applications and mechanistic insights

Alexander M Khenkin et al. J Am Chem Soc. .

Abstract

Alkylarenes were catalytically and selectively oxidized to the corresponding benzylic acetates and carbonyl products by nitrate salts in acetic acid in the presence of Keggin type molybdenum-based heteropolyacids, H(3+)(x)()PV(x)()Mo(12)(-)(x)()O(40) (x = 0-2). H(5)PV(2)Mo(10)O(40) was especially effective. For methylarenes there was no over-oxidation to the carboxylic acid contrary to what was observed for nitric acid as oxidant. The conversion to the aldehyde/ketone could be increased by the addition of water to the reaction mixture. As evidenced by IR and (15)N NMR spectroscopy, initially the nitrate salt reacted with H(5)PV(2)Mo(10)O(40) to yield a N(V)O(2)(+)[H(4)PV(2)Mo(10)O(40)] intermediate. In an electron-transfer reaction, the proposed N(V)O(2)(+)[H(4)PV(2)Mo(10)O(40)] complex reacts with the alkylarene substrate to yield a radical-cation-based donor-acceptor intermediate, N(IV)O(2)[H(4)PV(2)Mo(10)O(40)]-ArCH(2)R(+)(*). Concurrent proton transfer yields an alkylarene radical, ArCHR(*), and NO(2). Alternatively, it is possible that the N(V)O(2)(+)[H(4)PV(2)Mo(10)O(40)] complex abstracts a hydrogen atom from alkylarene substrate to directly yield ArCHR(*) and NO(2). The electron transfer-proton transfer and hydrogen abstraction scenarios are supported by the correlation of the reaction rate with the ionization potential and the bond dissociation energy at the benzylic positions of the alkylarene, respectively, the high kinetic isotope effect determined for substrates deuterated at the benzylic position, and the reaction order in the catalyst. Product selectivity in the oxidation of phenylcyclopropane tends to support the electron transfer-proton transfer pathway. The ArCHR(*) and NO(2) radical species undergo heterocoupling to yield a benzylic nitrite, which undergoes hydrolysis or acetolysis and subsequent reactions to yield benzylic acetates and corresponding aldehydes or ketones as final products.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources